First_RAG_System / embedder_light.py
HamidOmarov's picture
Upload 7 files
e02136d verified
raw
history blame contribute delete
574 Bytes
from transformers import AutoTokenizer, AutoModel
import torch
def get_embedder():
model_name = "microsoft/MiniLM-L12-H384-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
return tokenizer, model
def embed_text(texts, tokenizer, model):
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
model_output = model(**encoded_input)
embeddings = model_output.last_hidden_state.mean(dim=1)
return embeddings.numpy().tolist()