HamidOmarov commited on
Commit
1795915
ยท
verified ยท
1 Parent(s): 9cb4c8f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -91
README.md CHANGED
@@ -13,94 +13,3 @@ pinned: false
13
  # PDF RAG (Chroma + Groq)
14
 
15
  Upload a PDF and ask questions. Uses ChromaDB for retrieval and Groq LLM for answers.
16
-
17
-
18
-
19
-
20
- # RAG 30 Days Sprint ๐Ÿš€
21
-
22
- This repository contains a 30-day sprint to master Retrieval-Augmented Generation (RAG) systems using Python, LangChain, and modern AI tools.
23
-
24
- ## ๐Ÿ“… Day Tracker
25
-
26
- | Day | Folder | Description | Status |
27
- |-----|--------|------------------------|--------|
28
- | 1 | day1 | Hello world test file | โœ… |
29
- | 2 | day2 | TBD | โณ |
30
- | ... | ... | ... | ... |
31
-
32
- ## ๐Ÿ“‚ Folder Structure
33
-
34
- rag-30-days/
35
- โ”‚
36
- โ”œโ”€โ”€ day1/
37
- โ”‚ โ””โ”€โ”€ hello_ai.py
38
- โ”‚
39
- โ”œโ”€โ”€ README.md
40
-
41
- markdown
42
- Copy
43
- Edit
44
-
45
- ## ๐Ÿง  Goal
46
-
47
- To build a production-ready RAG pipeline in 30 days and land a remote AI job by the end of the sprint.
48
-
49
- ## ๐Ÿ› ๏ธ Tools
50
-
51
- - Python
52
- - LangChain
53
- - ChromaDB / Weaviate / FAISS
54
- - OpenAI API
55
- - Streamlit (optional UI)
56
- - Git & GitHub
57
-
58
- ## ๐Ÿ“ˆ Progress
59
-
60
- Check commits and folders daily to follow the sprint. Each folder corresponds to 1 day of learning and building.
61
-
62
- ## ๐Ÿ“… Day 1 โ€“ Getting Started with Python & Flask
63
-
64
- ### โœ… What I Learned
65
- - Refreshed core **Python basics** (variables, functions, classes, etc.)
66
- - Built my first **Flask API** with real-world JSON responses
67
- - Practiced structured coding with **Copilot assistance**
68
-
69
- ### ๐Ÿ› ๏ธ What I Built
70
- - `hello_ai.py`: A minimal Python script to print a welcome message
71
- - `api.py`: A Flask application with 3 endpoints:
72
- - `/hello`: greeting message
73
- - `/calculate`: accepts 2 numbers (POST) and returns their sum
74
- - `/ai-ready`: motivational message for AI learning
75
-
76
- ### ๐Ÿ”ฎ Tomorrow's Plan
77
- - Begin **LangChain** setup and environment configuration
78
- - Start working on **RAG-based document processing**
79
- - Set up folder structure and `day2` workflow
80
-
81
- > ๐Ÿ‘ฃ One day down, 29 to go. Keep shipping.
82
-
83
- ## Day 3: First RAG System โœ…
84
-
85
- ### What I Built
86
- - PDF processing pipeline (loader + optimal chunker)
87
- - Compared 3 chunking strategies (fixed, recursive, token)
88
- - ChromaDB vector storage (persistent)
89
- - SentenceTransformer embeddings (MiniLM)
90
- - Gradio chat interface (upload PDF โ†’ ask)
91
- - Deployment on Hugging Face Spaces
92
-
93
- ### Key Learnings
94
- - Fixed vs Recursive vs Token-based chunking trade-offs
95
- - Embedding format must be list[list[float]] for Chroma
96
- - New Chroma API uses `PersistentClient`
97
- - Prompt design: extractive answers + fallback
98
-
99
- ### Live Demo
100
- ๐Ÿ”— [HuggingFace Space Link](https://didactic-winner-q7g79xg9gp4626w56-7860.app.github.dev/)
101
-
102
- ## ๐Ÿ“ฌ Contact
103
-
104
- Made by [Hamid Omarov](https://www.linkedin.com/in/hamidomarov)
105
- Check out my portfolio: [Notion Page](https://www.notion.so/AI-Content-Factory-Operations-2400a72a724c8050b5c6ddc0e6a0a77d)
106
-
 
13
  # PDF RAG (Chroma + Groq)
14
 
15
  Upload a PDF and ask questions. Uses ChromaDB for retrieval and Groq LLM for answers.