Spaces:
Running
on
Zero
Running
on
Zero
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import MllamaForConditionalGeneration, AutoProcessor | |
from PIL import Image | |
import torch | |
import requests | |
from io import BytesIO | |
app = FastAPI() | |
# Initialize model and processor | |
ckpt = "unsloth/Llama-3.2-11B-Vision-Instruct" | |
model = MllamaForConditionalGeneration.from_pretrained( | |
ckpt, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
processor = AutoProcessor.from_pretrained(ckpt) | |
class ImageRequest(BaseModel): | |
image_path: str | |
async def extract_text(request: ImageRequest): | |
try: | |
# Download image from URL | |
response = requests.get(request.image_path) | |
if response.status_code != 200: | |
raise HTTPException(status_code=400, detail="Failed to fetch image from URL") | |
# Open image from bytes | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
# Create message structure | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": "Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output"}, | |
{"type": "image"} | |
] | |
} | |
] | |
# Process input | |
texts = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(text=texts, images=[image], return_tensors="pt").to("cuda") | |
# Generate output | |
outputs = model.generate(**inputs, max_new_tokens=250) | |
result = processor.decode(outputs[0], skip_special_tokens=True) | |
# Clean up the output | |
if "assistant" in result.lower(): | |
result = result[result.lower().find("assistant") + len("assistant"):].strip() | |
result = result.replace("user", "").replace("Extract handwritten text from the image and output only the extracted text without any additional description or commentary in output", "").strip() | |
return {"text": f"\n{result}\n"} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |