Spaces:
Running
on
Zero
Running
on
Zero
Odulana Hammed
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,100 +1,49 @@
|
|
1 |
-
|
|
|
2 |
from PIL import Image
|
3 |
-
import requests
|
4 |
import torch
|
5 |
-
from threading import Thread
|
6 |
-
import gradio as gr
|
7 |
-
from gradio import FileData
|
8 |
import time
|
9 |
import spaces
|
|
|
|
|
10 |
ckpt = "alpindale/Llama-3.2-11B-Vision-Instruct"
|
11 |
-
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
|
12 |
-
torch_dtype=torch.bfloat16).to("cuda")
|
13 |
processor = AutoProcessor.from_pretrained(ckpt)
|
14 |
|
15 |
-
|
16 |
@spaces.GPU
|
17 |
-
def
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
for i, msg in enumerate(history):
|
27 |
-
if isinstance(msg[0], tuple):
|
28 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
29 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
30 |
-
images.append(Image.open(msg[0][0]).convert("RGB"))
|
31 |
-
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
32 |
-
# messages are already handled
|
33 |
-
pass
|
34 |
-
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
|
35 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
36 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
37 |
-
|
38 |
-
# add current message
|
39 |
-
if len(message["files"]) == 1:
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
generated_text_without_prompt = buffer
|
69 |
-
time.sleep(0.01)
|
70 |
-
yield buffer
|
71 |
-
|
72 |
-
|
73 |
-
demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[
|
74 |
-
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]},
|
75 |
-
200],
|
76 |
-
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]},
|
77 |
-
250],
|
78 |
-
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]},
|
79 |
-
250],
|
80 |
-
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]},
|
81 |
-
250],
|
82 |
-
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]},
|
83 |
-
250],
|
84 |
-
],
|
85 |
-
textbox=gr.MultimodalTextbox(),
|
86 |
-
additional_inputs = [gr.Slider(
|
87 |
-
minimum=10,
|
88 |
-
maximum=500,
|
89 |
-
value=250,
|
90 |
-
step=10,
|
91 |
-
label="Maximum number of new tokens to generate",
|
92 |
-
)
|
93 |
-
],
|
94 |
-
cache_examples=False,
|
95 |
-
description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
|
96 |
-
stop_btn="Stop Generation",
|
97 |
-
fill_height=True,
|
98 |
-
multimodal=True)
|
99 |
-
|
100 |
-
demo.launch(debug=True)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
3 |
from PIL import Image
|
|
|
4 |
import torch
|
|
|
|
|
|
|
5 |
import time
|
6 |
import spaces
|
7 |
+
|
8 |
+
# Load Vision-Instruct model
|
9 |
ckpt = "alpindale/Llama-3.2-11B-Vision-Instruct"
|
10 |
+
model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda")
|
|
|
11 |
processor = AutoProcessor.from_pretrained(ckpt)
|
12 |
|
13 |
+
# Define the function to extract text from the image
|
14 |
@spaces.GPU
|
15 |
+
def extract_text_from_image(image, max_new_tokens=250):
|
16 |
+
"""
|
17 |
+
Extract handwritten text from the image using Meta-Llama Vision-Instruct.
|
18 |
+
"""
|
19 |
+
try:
|
20 |
+
# Process the image
|
21 |
+
inputs = processor(images=image, return_tensors="pt").to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Generate the prediction
|
24 |
+
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
|
25 |
+
|
26 |
+
# Decode the generated text
|
27 |
+
extracted_text = processor.decode(outputs[0], skip_special_tokens=True)
|
28 |
+
|
29 |
+
return extracted_text
|
30 |
+
except Exception as e:
|
31 |
+
return f"An error occurred: {str(e)}"
|
32 |
+
|
33 |
+
# Define Gradio interface for image upload and text extraction
|
34 |
+
title = "Handwritten Text Extraction"
|
35 |
+
description = """
|
36 |
+
Upload an image with handwritten text, and this app will use Meta-Llama Vision-Instruct to extract the text.
|
37 |
+
"""
|
38 |
+
|
39 |
+
demo = gr.Interface(
|
40 |
+
fn=extract_text_from_image,
|
41 |
+
inputs=gr.Image(type="pil", label="Upload Handwritten Image"),
|
42 |
+
outputs=gr.Textbox(label="Extracted Text"),
|
43 |
+
title=title,
|
44 |
+
description=description,
|
45 |
+
live=False # Disable live updates since the extraction will happen after the user submits
|
46 |
+
)
|
47 |
+
|
48 |
+
if __name__ == "__main__":
|
49 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|