Odulana Hammed commited on
Commit
0020f51
·
verified ·
1 Parent(s): ba29a88

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -91
app.py CHANGED
@@ -1,100 +1,49 @@
1
- from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
 
2
  from PIL import Image
3
- import requests
4
  import torch
5
- from threading import Thread
6
- import gradio as gr
7
- from gradio import FileData
8
  import time
9
  import spaces
 
 
10
  ckpt = "alpindale/Llama-3.2-11B-Vision-Instruct"
11
- model = MllamaForConditionalGeneration.from_pretrained(ckpt,
12
- torch_dtype=torch.bfloat16).to("cuda")
13
  processor = AutoProcessor.from_pretrained(ckpt)
14
 
15
-
16
  @spaces.GPU
17
- def bot_streaming(message, history, max_new_tokens=250):
18
-
19
- txt = message["text"]
20
- ext_buffer = f"{txt}"
21
-
22
- messages= []
23
- images = []
24
-
25
-
26
- for i, msg in enumerate(history):
27
- if isinstance(msg[0], tuple):
28
- messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
29
- messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
30
- images.append(Image.open(msg[0][0]).convert("RGB"))
31
- elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
32
- # messages are already handled
33
- pass
34
- elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
35
- messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
36
- messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
37
-
38
- # add current message
39
- if len(message["files"]) == 1:
40
 
41
- if isinstance(message["files"][0], str): # examples
42
- image = Image.open(message["files"][0]).convert("RGB")
43
- else: # regular input
44
- image = Image.open(message["files"][0]["path"]).convert("RGB")
45
- images.append(image)
46
- messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
47
- else:
48
- messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
49
-
50
-
51
- texts = processor.apply_chat_template(messages, add_generation_prompt=True)
52
-
53
- if images == []:
54
- inputs = processor(text=texts, return_tensors="pt").to("cuda")
55
- else:
56
- inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
57
- streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
58
-
59
- generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
60
- generated_text = ""
61
-
62
- thread = Thread(target=model.generate, kwargs=generation_kwargs)
63
- thread.start()
64
- buffer = ""
65
-
66
- for new_text in streamer:
67
- buffer += new_text
68
- generated_text_without_prompt = buffer
69
- time.sleep(0.01)
70
- yield buffer
71
-
72
-
73
- demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[
74
- [{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]},
75
- 200],
76
- [{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]},
77
- 250],
78
- [{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]},
79
- 250],
80
- [{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]},
81
- 250],
82
- [{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]},
83
- 250],
84
- ],
85
- textbox=gr.MultimodalTextbox(),
86
- additional_inputs = [gr.Slider(
87
- minimum=10,
88
- maximum=500,
89
- value=250,
90
- step=10,
91
- label="Maximum number of new tokens to generate",
92
- )
93
- ],
94
- cache_examples=False,
95
- description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
96
- stop_btn="Stop Generation",
97
- fill_height=True,
98
- multimodal=True)
99
-
100
- demo.launch(debug=True)
 
1
+ import gradio as gr
2
+ from transformers import AutoProcessor, MllamaForConditionalGeneration
3
  from PIL import Image
 
4
  import torch
 
 
 
5
  import time
6
  import spaces
7
+
8
+ # Load Vision-Instruct model
9
  ckpt = "alpindale/Llama-3.2-11B-Vision-Instruct"
10
+ model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda")
 
11
  processor = AutoProcessor.from_pretrained(ckpt)
12
 
13
+ # Define the function to extract text from the image
14
  @spaces.GPU
15
+ def extract_text_from_image(image, max_new_tokens=250):
16
+ """
17
+ Extract handwritten text from the image using Meta-Llama Vision-Instruct.
18
+ """
19
+ try:
20
+ # Process the image
21
+ inputs = processor(images=image, return_tensors="pt").to("cuda")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
+ # Generate the prediction
24
+ outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
25
+
26
+ # Decode the generated text
27
+ extracted_text = processor.decode(outputs[0], skip_special_tokens=True)
28
+
29
+ return extracted_text
30
+ except Exception as e:
31
+ return f"An error occurred: {str(e)}"
32
+
33
+ # Define Gradio interface for image upload and text extraction
34
+ title = "Handwritten Text Extraction"
35
+ description = """
36
+ Upload an image with handwritten text, and this app will use Meta-Llama Vision-Instruct to extract the text.
37
+ """
38
+
39
+ demo = gr.Interface(
40
+ fn=extract_text_from_image,
41
+ inputs=gr.Image(type="pil", label="Upload Handwritten Image"),
42
+ outputs=gr.Textbox(label="Extracted Text"),
43
+ title=title,
44
+ description=description,
45
+ live=False # Disable live updates since the extraction will happen after the user submits
46
+ )
47
+
48
+ if __name__ == "__main__":
49
+ demo.launch(server_name="0.0.0.0", server_port=7860)