File size: 885 Bytes
03a6314
a86dc43
 
b70ea9a
03a6314
a86dc43
62a0150
a9a7711
03a6314
a86dc43
 
 
 
 
 
 
 
 
 
 
 
913e91c
a86dc43
 
 
03a6314
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import tf_keras as keras
import gradio as gr
import cv2
import os
from dotenv import load_dotenv()


print(os.listdir('./model'))
used_model = keras.models.load_model('./model')
new_classes = ['blight', 'common_rust', 'gray_leaf_spot','healthy']

def classify_image(img_dt):
  img_dt = cv2.resize(img_dt,(256,256))
  img_dt = img_dt.reshape((-1,256,256,3)) 
  prediction = used_model.predict(img_dt).flatten()
  confidences = {new_classes[i]: float(prediction[i]) for i in range (4) }
  return confidences


with gr.Blocks() as demo:
    with gr.Row():
        signal = gr.Markdown(''' #Welcome to Maize Classifier,This model can identify if a leaf is 
        **HEALTHY**, has **COMMON RUST**, **BLIGHT** or **GRAY LEAF SPOT**''')
        inp = gr.image()
        out = gr.Label()
        inp.upload(fn= classify_image, inputs = inp, outputs = out, show_progrss = True)

demo.launch()