Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
|
| 4 |
+
class_names = [
|
| 5 |
+
"person",
|
| 6 |
+
"bicycle",
|
| 7 |
+
"car",
|
| 8 |
+
"motorcycle",
|
| 9 |
+
"airplane",
|
| 10 |
+
"bus",
|
| 11 |
+
"train",
|
| 12 |
+
"truck",
|
| 13 |
+
"boat",
|
| 14 |
+
"traffic light",
|
| 15 |
+
"fire hydrant",
|
| 16 |
+
"stop sign",
|
| 17 |
+
"parking meter",
|
| 18 |
+
"bench",
|
| 19 |
+
"bird",
|
| 20 |
+
"cat",
|
| 21 |
+
"dog",
|
| 22 |
+
"horse",
|
| 23 |
+
"sheep",
|
| 24 |
+
"cow",
|
| 25 |
+
"elephant",
|
| 26 |
+
"bear",
|
| 27 |
+
"zebra",
|
| 28 |
+
"giraffe",
|
| 29 |
+
"backpack",
|
| 30 |
+
"umbrella",
|
| 31 |
+
"handbag",
|
| 32 |
+
"tie",
|
| 33 |
+
"suitcase",
|
| 34 |
+
"frisbee",
|
| 35 |
+
"skis",
|
| 36 |
+
"snowboard",
|
| 37 |
+
"sports ball",
|
| 38 |
+
"kite",
|
| 39 |
+
"baseball bat",
|
| 40 |
+
"baseball glove",
|
| 41 |
+
"skateboard",
|
| 42 |
+
"surfboard",
|
| 43 |
+
"tennis racket",
|
| 44 |
+
"bottle",
|
| 45 |
+
"wine glass",
|
| 46 |
+
"cup",
|
| 47 |
+
"fork",
|
| 48 |
+
"knife",
|
| 49 |
+
"spoon",
|
| 50 |
+
"bowl",
|
| 51 |
+
"banana",
|
| 52 |
+
"apple",
|
| 53 |
+
"sandwich",
|
| 54 |
+
"orange",
|
| 55 |
+
"broccoli",
|
| 56 |
+
"carrot",
|
| 57 |
+
"hot dog",
|
| 58 |
+
"pizza",
|
| 59 |
+
"donut",
|
| 60 |
+
"cake",
|
| 61 |
+
"chair",
|
| 62 |
+
"couch",
|
| 63 |
+
"potted plant",
|
| 64 |
+
"bed",
|
| 65 |
+
"dining table",
|
| 66 |
+
"toilet",
|
| 67 |
+
"tv",
|
| 68 |
+
"laptop",
|
| 69 |
+
"mouse",
|
| 70 |
+
"remote",
|
| 71 |
+
"keyboard",
|
| 72 |
+
"cell phone",
|
| 73 |
+
"microwave",
|
| 74 |
+
"oven",
|
| 75 |
+
"toaster",
|
| 76 |
+
"sink",
|
| 77 |
+
"refrigerator",
|
| 78 |
+
"book",
|
| 79 |
+
"clock",
|
| 80 |
+
"vase",
|
| 81 |
+
"scissors",
|
| 82 |
+
"teddy bear",
|
| 83 |
+
"hair drier",
|
| 84 |
+
"toothbrush",
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
# Create a list of colors for each class where each color is a tuple of 3 integer values
|
| 88 |
+
rng = np.random.default_rng(3)
|
| 89 |
+
colors = rng.uniform(0, 255, size=(len(class_names), 3))
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def nms(boxes, scores, iou_threshold):
|
| 93 |
+
# Sort by score
|
| 94 |
+
sorted_indices = np.argsort(scores)[::-1]
|
| 95 |
+
|
| 96 |
+
keep_boxes = []
|
| 97 |
+
while sorted_indices.size > 0:
|
| 98 |
+
# Pick the last box
|
| 99 |
+
box_id = sorted_indices[0]
|
| 100 |
+
keep_boxes.append(box_id)
|
| 101 |
+
|
| 102 |
+
# Compute IoU of the picked box with the rest
|
| 103 |
+
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
|
| 104 |
+
|
| 105 |
+
# Remove boxes with IoU over the threshold
|
| 106 |
+
keep_indices = np.where(ious < iou_threshold)[0]
|
| 107 |
+
|
| 108 |
+
# print(keep_indices.shape, sorted_indices.shape)
|
| 109 |
+
sorted_indices = sorted_indices[keep_indices + 1]
|
| 110 |
+
|
| 111 |
+
return keep_boxes
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def multiclass_nms(boxes, scores, class_ids, iou_threshold):
|
| 115 |
+
unique_class_ids = np.unique(class_ids)
|
| 116 |
+
|
| 117 |
+
keep_boxes = []
|
| 118 |
+
for class_id in unique_class_ids:
|
| 119 |
+
class_indices = np.where(class_ids == class_id)[0]
|
| 120 |
+
class_boxes = boxes[class_indices, :]
|
| 121 |
+
class_scores = scores[class_indices]
|
| 122 |
+
|
| 123 |
+
class_keep_boxes = nms(class_boxes, class_scores, iou_threshold)
|
| 124 |
+
keep_boxes.extend(class_indices[class_keep_boxes])
|
| 125 |
+
|
| 126 |
+
return keep_boxes
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def compute_iou(box, boxes):
|
| 130 |
+
# Compute xmin, ymin, xmax, ymax for both boxes
|
| 131 |
+
xmin = np.maximum(box[0], boxes[:, 0])
|
| 132 |
+
ymin = np.maximum(box[1], boxes[:, 1])
|
| 133 |
+
xmax = np.minimum(box[2], boxes[:, 2])
|
| 134 |
+
ymax = np.minimum(box[3], boxes[:, 3])
|
| 135 |
+
|
| 136 |
+
# Compute intersection area
|
| 137 |
+
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
|
| 138 |
+
|
| 139 |
+
# Compute union area
|
| 140 |
+
box_area = (box[2] - box[0]) * (box[3] - box[1])
|
| 141 |
+
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
| 142 |
+
union_area = box_area + boxes_area - intersection_area
|
| 143 |
+
|
| 144 |
+
# Compute IoU
|
| 145 |
+
iou = intersection_area / union_area
|
| 146 |
+
|
| 147 |
+
return iou
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def xywh2xyxy(x):
|
| 151 |
+
# Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
|
| 152 |
+
y = np.copy(x)
|
| 153 |
+
y[..., 0] = x[..., 0] - x[..., 2] / 2
|
| 154 |
+
y[..., 1] = x[..., 1] - x[..., 3] / 2
|
| 155 |
+
y[..., 2] = x[..., 0] + x[..., 2] / 2
|
| 156 |
+
y[..., 3] = x[..., 1] + x[..., 3] / 2
|
| 157 |
+
return y
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def draw_detections(image, boxes, scores, class_ids, mask_alpha=0.3):
|
| 161 |
+
det_img = image.copy()
|
| 162 |
+
|
| 163 |
+
img_height, img_width = image.shape[:2]
|
| 164 |
+
font_size = min([img_height, img_width]) * 0.0006
|
| 165 |
+
text_thickness = int(min([img_height, img_width]) * 0.001)
|
| 166 |
+
|
| 167 |
+
#det_img = draw_masks(det_img, boxes, class_ids, mask_alpha)
|
| 168 |
+
|
| 169 |
+
# Draw bounding boxes and labels of detections
|
| 170 |
+
for class_id, box, score in zip(class_ids, boxes, scores):
|
| 171 |
+
color = colors[class_id]
|
| 172 |
+
|
| 173 |
+
draw_box(det_img, box, color)
|
| 174 |
+
|
| 175 |
+
label = class_names[class_id]
|
| 176 |
+
caption = f"{label} {int(score * 100)}%"
|
| 177 |
+
draw_text(det_img, caption, box, color, font_size, text_thickness)
|
| 178 |
+
|
| 179 |
+
return det_img
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def draw_box(
|
| 183 |
+
image: np.ndarray,
|
| 184 |
+
box: np.ndarray,
|
| 185 |
+
color: tuple[int, int, int] = (0, 0, 255),
|
| 186 |
+
thickness: int = 2,
|
| 187 |
+
) -> np.ndarray:
|
| 188 |
+
x1, y1, x2, y2 = box.astype(int)
|
| 189 |
+
return cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def draw_text(
|
| 193 |
+
image: np.ndarray,
|
| 194 |
+
text: str,
|
| 195 |
+
box: np.ndarray,
|
| 196 |
+
color: tuple[int, int, int] = (0, 0, 255),
|
| 197 |
+
font_size: float = 0.001,
|
| 198 |
+
text_thickness: int = 2,
|
| 199 |
+
) -> np.ndarray:
|
| 200 |
+
x1, y1, x2, y2 = box.astype(int)
|
| 201 |
+
(tw, th), _ = cv2.getTextSize(
|
| 202 |
+
text=text,
|
| 203 |
+
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
|
| 204 |
+
fontScale=font_size,
|
| 205 |
+
thickness=text_thickness,
|
| 206 |
+
)
|
| 207 |
+
th = int(th * 1.2)
|
| 208 |
+
|
| 209 |
+
cv2.rectangle(image, (x1, y1), (x1 + tw, y1 - th), color, -1)
|
| 210 |
+
|
| 211 |
+
return cv2.putText(
|
| 212 |
+
image,
|
| 213 |
+
text,
|
| 214 |
+
(x1, y1),
|
| 215 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
| 216 |
+
font_size,
|
| 217 |
+
(255, 255, 255),
|
| 218 |
+
text_thickness,
|
| 219 |
+
cv2.LINE_AA,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def draw_masks(
|
| 224 |
+
image: np.ndarray, boxes: np.ndarray, classes: np.ndarray, mask_alpha: float = 0.3
|
| 225 |
+
) -> np.ndarray:
|
| 226 |
+
mask_img = image.copy()
|
| 227 |
+
|
| 228 |
+
# Draw bounding boxes and labels of detections
|
| 229 |
+
for box, class_id in zip(boxes, classes):
|
| 230 |
+
color = colors[class_id]
|
| 231 |
+
|
| 232 |
+
x1, y1, x2, y2 = box.astype(int)
|
| 233 |
+
|
| 234 |
+
# Draw fill rectangle in mask image
|
| 235 |
+
cv2.rectangle(mask_img, (x1, y1), (x2, y2), color, -1)
|
| 236 |
+
|
| 237 |
+
return cv2.addWeighted(mask_img, mask_alpha, image, 1 - mask_alpha, 0)
|