File size: 4,854 Bytes
2e7a35a
 
 
 
 
 
99b7cde
 
 
4a49d79
99b7cde
2e7a35a
 
 
 
324b092
2e7a35a
 
324b092
99b7cde
 
2e7a35a
 
99b7cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb96e6
99b7cde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb31088
477f1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324b092
 
adb96e6
 
 
 
 
 
 
6c98e1c
 
 
 
 
 
 
 
 
 
 
 
 
477f1cf
 
 
 
 
 
324b092
2acbc36
324b092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a49d79
 
3a5a4c6
4a49d79
 
324b092
 
 
 
 
 
 
 
3a5a4c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Chroma compatibility issue resolution
# https://docs.trychroma.com/troubleshooting#sqlite
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')

from tempfile import NamedTemporaryFile
from typing import List

import chainlit as cl
from chainlit.types import AskFileResponse

import chromadb
from chromadb.config import Settings
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PDFPlumberLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.schema import Document, StrOutputParser
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.vectorstores.base import VectorStore


def process_file(*, file: AskFileResponse) -> List[Document]:
    """Processes one PDF file from a Chainlit AskFileResponse object by first
    loading the PDF document and then chunk it into sub documents. Only
    supports PDF files.

    Args:
        file (AskFileResponse): input file to be processed
    
    Raises:
        ValueError: when we fail to process PDF files. We consider PDF file
        processing failure when there's no text returned. For example, PDFs
        with only image contents, corrupted PDFs, etc.

    Returns:
        List[Document]: List of Document(s). Each individual document has two
        fields: page_content(string) and metadata(dict).
    """
    if file.type != "application/pdf":
        raise TypeError("Only PDF files are supported")

    with NamedTemporaryFile() as tempfile:
        tempfile.write(file.content)

        loader = PDFPlumberLoader(tempfile.name)
        documents = loader.load()

        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=3000,
            chunk_overlap=100
        )
        docs = text_splitter.split_documents(documents)

        # We are adding source_id into the metadata here to denote which
        # source document it is.
        for i, doc in enumerate(docs):
            doc.metadata["source"] = f"source_{i}"

        if not docs:
            raise ValueError("PDF file parsing failed.")

        return docs


def create_search_engine(*, file: AskFileResponse) -> VectorStore:
    
    # Process and save data in the user session
    docs = process_file(file=file)
    cl.user_session.set("docs", docs)
    
    encoder = OpenAIEmbeddings(
        model="text-embedding-ada-002"
    )
    
    # Initialize Chromadb client and settings, reset to ensure we get a clean
    # search engine
    client = chromadb.EphemeralClient()
    client_settings=Settings(
        allow_reset=True,
        anonymized_telemetry=False
    )
    search_engine = Chroma(
        client=client,
        client_settings=client_settings
    )
    search_engine._client.reset()

    search_engine = Chroma.from_documents(
        client=client,
        documents=docs,
        embedding=encoder,
        client_settings=client_settings 
    )

    return search_engine
    

@cl.on_chat_start
async def on_chat_start():
    """This function is written to prepare the environments for the chat
    with PDF application. It should be decorated with cl.on_chat_start.

    Returns:
        None
    """

    files = None
    while files is None:
        files = await cl.AskFileMessage(
            content="Please Upload the PDF file you want to chat with...",
            accept=["application/pdf"],
            max_size_mb=20,
        ).send()
    file = files[0]

    # Send message to user to let them know we are processing the file
    msg = cl.Message(content=f"Processing `{file.name}`...")
    await msg.send()

    try:
        search_engine = await cl.make_async(create_search_engine)(file=file)
    except Exception as e:
        await cl.Message(content=f"Error: {e}").send()
        raise SystemError

    model = ChatOpenAI(
        model="gpt-3.5-turbo-16k-0613",
        streaming=True
    )

    prompt = ChatPromptTemplate.from_messages(
        [
            (
                "system",
                "You are Chainlit GPT, a helpful assistant.",
            ),
            (
                "human",
                "{question}"
            ),
        ]
    )
    chain = LLMChain(llm=model, prompt=prompt, output_parser=StrOutputParser())

    # We are saving the chain in user_session, so we do not have to rebuild
    # it every single time.
    cl.user_session.set("chain", chain)


@cl.on_message
async def main(message: cl.Message):

    # Let's load the chain from user_session
    chain = cl.user_session.get("chain")  # type: LLMChain

    response = await chain.arun(
        question=message.content, callbacks=[cl.LangchainCallbackHandler()]
    )

    await cl.Message(content=response).send()