feat: 01_06 End
Browse files- app/app.py +2 -200
- app/prompt.py +0 -26
app/app.py
CHANGED
@@ -1,207 +1,9 @@
|
|
1 |
-
# Chroma compatibility issue resolution
|
2 |
-
# https://docs.trychroma.com/troubleshooting#sqlite
|
3 |
-
__import__('pysqlite3')
|
4 |
-
import sys
|
5 |
-
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
6 |
-
|
7 |
-
from tempfile import NamedTemporaryFile
|
8 |
-
|
9 |
import chainlit as cl
|
10 |
-
from chainlit.types import AskFileResponse
|
11 |
-
|
12 |
-
import chromadb
|
13 |
-
from chromadb.config import Settings
|
14 |
-
from langchain.chains import ConversationalRetrievalChain, RetrievalQAWithSourcesChain
|
15 |
-
from langchain.chains.base import Chain
|
16 |
-
from langchain.chat_models import ChatOpenAI
|
17 |
-
from langchain.document_loaders import PDFPlumberLoader
|
18 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
19 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
20 |
-
from langchain.vectorstores import Chroma
|
21 |
-
from langchain.vectorstores.base import VectorStore
|
22 |
-
|
23 |
-
from prompt import EXAMPLE_PROMPT, PROMPT, WELCOME_MESSAGE
|
24 |
-
|
25 |
-
|
26 |
-
namespaces = set()
|
27 |
-
|
28 |
-
|
29 |
-
def process_file(*, file: AskFileResponse) -> list:
|
30 |
-
if file.type != "application/pdf":
|
31 |
-
raise TypeError("Only PDF files are supported")
|
32 |
-
|
33 |
-
|
34 |
-
with NamedTemporaryFile() as tempfile:
|
35 |
-
tempfile.write(file.content)
|
36 |
-
|
37 |
-
######################################################################
|
38 |
-
#
|
39 |
-
# 1. Load the PDF
|
40 |
-
#
|
41 |
-
######################################################################
|
42 |
-
loader = PDFPlumberLoader(tempfile.name)
|
43 |
-
|
44 |
-
######################################################################
|
45 |
-
documents = loader.load()
|
46 |
-
|
47 |
-
######################################################################
|
48 |
-
#
|
49 |
-
# 2. Split the text
|
50 |
-
#
|
51 |
-
######################################################################
|
52 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
53 |
-
chunk_size=3000,
|
54 |
-
chunk_overlap=100
|
55 |
-
)
|
56 |
-
######################################################################
|
57 |
-
|
58 |
-
docs = text_splitter.split_documents(documents)
|
59 |
-
|
60 |
-
for i, doc in enumerate(docs):
|
61 |
-
doc.metadata["source"] = f"source_{i}"
|
62 |
-
|
63 |
-
if not docs:
|
64 |
-
raise ValueError("PDF file parsing failed.")
|
65 |
-
|
66 |
-
return docs
|
67 |
-
|
68 |
-
|
69 |
-
def create_search_engine(*, file: AskFileResponse) -> VectorStore:
|
70 |
-
|
71 |
-
# Process and save data in the user session
|
72 |
-
docs = process_file(file=file)
|
73 |
-
cl.user_session.set("docs", docs)
|
74 |
-
|
75 |
-
##########################################################################
|
76 |
-
#
|
77 |
-
# 3. Set the Encoder model for creating embeddings
|
78 |
-
#
|
79 |
-
##########################################################################
|
80 |
-
encoder = OpenAIEmbeddings(
|
81 |
-
model="text-embedding-ada-002"
|
82 |
-
)
|
83 |
-
##########################################################################
|
84 |
-
|
85 |
-
# Initialize Chromadb client and settings, reset to ensure we get a clean
|
86 |
-
# search engine
|
87 |
-
client = chromadb.EphemeralClient()
|
88 |
-
client_settings=Settings(
|
89 |
-
allow_reset=True,
|
90 |
-
anonymized_telemetry=False
|
91 |
-
)
|
92 |
-
search_engine = Chroma(
|
93 |
-
client=client,
|
94 |
-
client_settings=client_settings
|
95 |
-
)
|
96 |
-
search_engine._client.reset()
|
97 |
-
|
98 |
-
##########################################################################
|
99 |
-
#
|
100 |
-
# 4. Create the document search engine. Remember to add
|
101 |
-
# client_settings using the above settings.
|
102 |
-
#
|
103 |
-
##########################################################################
|
104 |
-
|
105 |
-
search_engine = Chroma.from_documents(
|
106 |
-
client=client,
|
107 |
-
documents=docs,
|
108 |
-
embedding=encoder,
|
109 |
-
client_settings=client_settings
|
110 |
-
)
|
111 |
-
##########################################################################
|
112 |
-
|
113 |
-
return search_engine
|
114 |
-
|
115 |
-
|
116 |
-
@cl.on_chat_start
|
117 |
-
async def start():
|
118 |
-
|
119 |
-
files = None
|
120 |
-
while files is None:
|
121 |
-
files = await cl.AskFileMessage(
|
122 |
-
content=WELCOME_MESSAGE,
|
123 |
-
accept=["application/pdf"],
|
124 |
-
max_size_mb=20,
|
125 |
-
).send()
|
126 |
-
|
127 |
-
file = files[0]
|
128 |
-
msg = cl.Message(content=f"Processing `{file.name}`...")
|
129 |
-
await msg.send()
|
130 |
-
|
131 |
-
try:
|
132 |
-
search_engine = await cl.make_async(create_search_engine)(file=file)
|
133 |
-
except Exception as e:
|
134 |
-
await cl.Message(content=f"Error: {e}").send()
|
135 |
-
raise SystemError
|
136 |
-
|
137 |
-
llm = ChatOpenAI(
|
138 |
-
model='gpt-3.5-turbo-16k-0613',
|
139 |
-
temperature=0,
|
140 |
-
streaming=True
|
141 |
-
)
|
142 |
-
|
143 |
-
##########################################################################
|
144 |
-
#
|
145 |
-
# 5. Create the chain / tool for RetrievalQAWithSourcesChain.
|
146 |
-
#
|
147 |
-
##########################################################################
|
148 |
-
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
149 |
-
llm=llm,
|
150 |
-
chain_type="stuff",
|
151 |
-
retriever=search_engine.as_retriever(max_tokens_limit=4097),
|
152 |
-
######################################################################
|
153 |
-
# 6. Customize prompts to improve summarization and question
|
154 |
-
# answering performance. Perhaps create your own prompt in prompts.py?
|
155 |
-
######################################################################
|
156 |
-
chain_type_kwargs={
|
157 |
-
"prompt": PROMPT,
|
158 |
-
"document_prompt": EXAMPLE_PROMPT
|
159 |
-
},
|
160 |
-
)
|
161 |
-
##########################################################################
|
162 |
-
|
163 |
-
# await msg.update(content=f"`{file.name}` processed. You can now ask questions!")
|
164 |
-
msg.content = f"`{file.name}` processed. You can now ask questions!"
|
165 |
-
await msg.update()
|
166 |
-
|
167 |
-
cl.user_session.set("chain", chain)
|
168 |
|
169 |
|
170 |
@cl.on_message
|
171 |
async def main(message: cl.Message):
|
172 |
|
173 |
-
|
174 |
-
cb = cl.AsyncLangchainCallbackHandler()
|
175 |
-
response = await chain.acall(message.content, callbacks=[cb])
|
176 |
-
answer = response["answer"]
|
177 |
-
sources = response["sources"].strip()
|
178 |
-
source_elements = []
|
179 |
-
|
180 |
-
# Get the documents from the user session
|
181 |
-
docs = cl.user_session.get("docs")
|
182 |
-
metadatas = [doc.metadata for doc in docs]
|
183 |
-
all_sources = [m["source"] for m in metadatas]
|
184 |
-
|
185 |
-
# Adding sources to the answer
|
186 |
-
if sources:
|
187 |
-
found_sources = []
|
188 |
-
|
189 |
-
# Add the sources to the message
|
190 |
-
for source in sources.split(","):
|
191 |
-
source_name = source.strip().replace(".", "")
|
192 |
-
# Get the index of the source
|
193 |
-
try:
|
194 |
-
index = all_sources.index(source_name)
|
195 |
-
except ValueError:
|
196 |
-
continue
|
197 |
-
text = docs[index].page_content
|
198 |
-
found_sources.append(source_name)
|
199 |
-
# Create the text element referenced in the message
|
200 |
-
source_elements.append(cl.Text(content=text, name=source_name))
|
201 |
-
|
202 |
-
if found_sources:
|
203 |
-
answer += f"\nSources: {', '.join(found_sources)}"
|
204 |
-
else:
|
205 |
-
answer += "\nNo sources found"
|
206 |
|
207 |
-
await cl.Message(content=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import chainlit as cl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
|
4 |
@cl.on_message
|
5 |
async def main(message: cl.Message):
|
6 |
|
7 |
+
response = message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
await cl.Message(content=response).send()
|
app/prompt.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
# flake8: noqa
|
2 |
-
from langchain.prompts import PromptTemplate
|
3 |
-
|
4 |
-
WELCOME_MESSAGE = """\
|
5 |
-
Welcome to Introduction to LLM App Development Sample PDF QA Application!
|
6 |
-
To get started:
|
7 |
-
1. Upload a PDF or text file
|
8 |
-
2. Ask any question about the file!
|
9 |
-
"""
|
10 |
-
|
11 |
-
template = """Given the following extracted parts of a long document and a question, create a final answer with references ("SOURCES").
|
12 |
-
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
|
13 |
-
ALWAYS return a "SOURCES" field in your answer, with the format "SOURCES: <source1>, <source2>, <source3>, ...".
|
14 |
-
|
15 |
-
QUESTION: {question}
|
16 |
-
=========
|
17 |
-
{summaries}
|
18 |
-
=========
|
19 |
-
FINAL ANSWER:"""
|
20 |
-
|
21 |
-
PROMPT = PromptTemplate(template=template, input_variables=["summaries", "question"])
|
22 |
-
|
23 |
-
EXAMPLE_PROMPT = PromptTemplate(
|
24 |
-
template="Content: {page_content}\nSource: {source}",
|
25 |
-
input_variables=["page_content", "source"],
|
26 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|