Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| import pytorch_lightning as pl | |
| import torch.nn.functional as F | |
| from contextlib import contextmanager | |
| from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer | |
| from ..modules.diffusion import model_lidm, model_ldm | |
| from ..modules.distributions.distributions import DiagonalGaussianDistribution | |
| from ..modules.ema import LitEma | |
| from ..utils.misc_utils import instantiate_from_config | |
| class VQModel(pl.LightningModule): | |
| def __init__(self, | |
| ddconfig, | |
| n_embed, | |
| embed_dim, | |
| lossconfig=None, | |
| ckpt_path=None, | |
| ignore_keys=[], | |
| image_key="image", | |
| colorize_nlabels=None, | |
| monitor=None, | |
| batch_resize_range=None, | |
| scheduler_config=None, | |
| lr_g_factor=1.0, | |
| remap=None, | |
| sane_index_shape=False, # tell vector quantizer to return indices as bhw | |
| use_ema=False, | |
| lib_name='ldm', | |
| use_mask=False, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| self.embed_dim = embed_dim | |
| self.n_embed = n_embed | |
| self.image_key = image_key | |
| self.use_mask = use_mask | |
| model_lib = eval(f'model_{lib_name}') | |
| self.encoder = model_lib.Encoder(**ddconfig) | |
| self.decoder = model_lib.Decoder(**ddconfig) | |
| if lossconfig is not None: | |
| self.loss = instantiate_from_config(lossconfig) | |
| self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, | |
| remap=remap, | |
| sane_index_shape=sane_index_shape) | |
| self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) | |
| self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
| if colorize_nlabels is not None: | |
| assert type(colorize_nlabels) == int | |
| self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
| if monitor is not None: | |
| self.monitor = monitor | |
| self.batch_resize_range = batch_resize_range | |
| if self.batch_resize_range is not None: | |
| print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.") | |
| self.use_ema = use_ema | |
| if self.use_ema: | |
| self.model_ema = LitEma(self) | |
| print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
| if ckpt_path is not None: | |
| self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
| self.scheduler_config = scheduler_config | |
| self.lr_g_factor = lr_g_factor | |
| def ema_scope(self, context=None): | |
| if self.use_ema: | |
| self.model_ema.store(self.parameters()) | |
| self.model_ema.copy_to(self) | |
| if context is not None: | |
| print(f"{context}: Switched to EMA weights") | |
| try: | |
| yield None | |
| finally: | |
| if self.use_ema: | |
| self.model_ema.restore(self.parameters()) | |
| if context is not None: | |
| print(f"{context}: Restored training weights") | |
| def init_from_ckpt(self, path, ignore_keys=list()): | |
| sd = torch.load(path, map_location="cpu")["state_dict"] | |
| keys = list(sd.keys()) | |
| for k in keys: | |
| for ik in ignore_keys: | |
| if k.startswith(ik): | |
| print("Deleting key {} from state_dict.".format(k)) | |
| del sd[k] | |
| missing, unexpected = self.load_state_dict(sd, strict=False) | |
| print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") | |
| if len(missing) > 0: | |
| print(f"Missing Keys: {missing}") | |
| print(f"Unexpected Keys: {unexpected}") | |
| def on_train_batch_end(self, *args, **kwargs): | |
| if self.use_ema: | |
| self.model_ema(self) | |
| def encode(self, x): | |
| h = self.encoder(x) | |
| h = self.quant_conv(h) | |
| quant, emb_loss, info = self.quantize(h) | |
| return quant, emb_loss, info | |
| def encode_to_prequant(self, x): | |
| h = self.encoder(x) | |
| h = self.quant_conv(h) | |
| return h | |
| def decode(self, quant): | |
| quant = self.post_quant_conv(quant) | |
| dec = self.decoder(quant) | |
| return dec | |
| def decode_code(self, code_b): | |
| quant_b = self.quantize.embed_code(code_b) | |
| dec = self.decode(quant_b) | |
| return dec | |
| def forward(self, input, return_pred_indices=False): | |
| quant, diff, (_, _, ind) = self.encode(input) | |
| dec = self.decode(quant) | |
| if return_pred_indices: | |
| return dec, diff, ind | |
| return dec, diff | |
| def get_input(self, batch, k): | |
| x = batch[k] | |
| # if len(x.shape) == 3: | |
| # x = x[..., None] | |
| if self.batch_resize_range is not None: | |
| lower_size = self.batch_resize_range[0] | |
| upper_size = self.batch_resize_range[1] | |
| if self.global_step <= 4: | |
| # do the first few batches with max size to avoid later oom | |
| new_resize = upper_size | |
| else: | |
| new_resize = np.random.choice(np.arange(lower_size, upper_size + 16, 16)) | |
| if new_resize != x.shape[2]: | |
| x = F.interpolate(x, size=new_resize, mode="bicubic") | |
| x = x.detach() | |
| return x | |
| def get_mask(self, batch): | |
| mask = batch['mask'] | |
| # if len(mask.shape) == 3: | |
| # mask = mask[..., None] | |
| return mask | |
| def training_step(self, batch, batch_idx, optimizer_idx): | |
| # https://github.com/pytorch/pytorch/issues/37142 | |
| # try not to fool the heuristics | |
| x = self.get_input(batch, self.image_key) | |
| m = self.get_mask(batch) if self.use_mask else None | |
| x_rec, qloss, ind = self(x, return_pred_indices=True) | |
| if optimizer_idx == 0: | |
| # autoencoder | |
| aeloss, log_dict_ae = self.loss(qloss, x, x_rec, optimizer_idx, self.global_step, | |
| last_layer=self.get_last_layer(), split="train", | |
| predicted_indices=None, masks=m) | |
| self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
| return aeloss | |
| if optimizer_idx == 1: | |
| # discriminator | |
| discloss, log_dict_disc = self.loss(qloss, x, x_rec, optimizer_idx, self.global_step, | |
| last_layer=self.get_last_layer(), split="train", | |
| masks=m) | |
| self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
| return discloss | |
| def validation_step(self, batch, batch_idx): | |
| log_dict = self._validation_step(batch, batch_idx) | |
| if self.use_ema: | |
| with self.ema_scope(): | |
| log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema") | |
| return log_dict | |
| def _validation_step(self, batch, batch_idx, suffix=""): | |
| x = self.get_input(batch, self.image_key) | |
| m = self.get_mask(batch) if self.use_mask else None | |
| xrec, qloss, ind = self(x, return_pred_indices=True) | |
| aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, | |
| self.global_step, | |
| last_layer=self.get_last_layer(), | |
| split="val" + suffix, | |
| predicted_indices=None, | |
| masks=m | |
| ) | |
| discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, | |
| self.global_step, | |
| last_layer=self.get_last_layer(), | |
| split="val" + suffix, | |
| predicted_indices=None, | |
| masks=m | |
| ) | |
| rec_loss = log_dict_ae[f"val{suffix}/rec_loss"] | |
| self.log(f"val{suffix}/rec_loss", rec_loss, | |
| prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) | |
| self.log(f"val{suffix}/aeloss", aeloss, | |
| prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) | |
| del log_dict_ae[f"val{suffix}/rec_loss"] | |
| self.log_dict(log_dict_ae) | |
| self.log_dict(log_dict_disc) | |
| return self.log_dict | |
| def configure_optimizers(self): | |
| lr_d = self.learning_rate | |
| lr_g = self.lr_g_factor * self.learning_rate | |
| # print("lr_d", lr_d) | |
| # print("lr_g", lr_g) | |
| opt_ae = torch.optim.Adam(list(self.encoder.parameters()) + | |
| list(self.decoder.parameters()) + | |
| list(self.quantize.parameters()) + | |
| list(self.quant_conv.parameters()) + | |
| list(self.post_quant_conv.parameters()), | |
| lr=lr_g, betas=(0.5, 0.9)) | |
| opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), | |
| lr=lr_d, betas=(0.5, 0.9)) | |
| if self.scheduler_config is not None: | |
| scheduler = instantiate_from_config(self.scheduler_config) | |
| print("Setting up LambdaLR scheduler...") | |
| scheduler = [ | |
| { | |
| 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule), | |
| 'interval': 'step', | |
| 'frequency': 1 | |
| }, | |
| { | |
| 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule), | |
| 'interval': 'step', | |
| 'frequency': 1 | |
| }, | |
| ] | |
| return [opt_ae, opt_disc], scheduler | |
| return [opt_ae, opt_disc], [] | |
| def get_last_layer(self): | |
| return self.decoder.conv_out.weight | |
| def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): | |
| log = dict() | |
| x = self.get_input(batch, self.image_key) | |
| x = x.to(self.device) | |
| if only_inputs: | |
| log["inputs"] = x | |
| return log | |
| xrec, _ = self(x) | |
| if self.use_mask: | |
| mask = xrec[:, 1:2] < 0. | |
| xrec = xrec[:, 0:1] | |
| xrec[mask] = -1. | |
| log["inputs"] = x | |
| log["reconstructions"] = xrec | |
| if plot_ema: | |
| with self.ema_scope(): | |
| xrec_ema, _ = self(x) | |
| log["reconstructions_ema"] = xrec_ema | |
| return log | |
| def to_rgb(self, x): | |
| assert self.image_key == "segmentation" | |
| if not hasattr(self, "colorize"): | |
| self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
| x = F.conv2d(x, weight=self.colorize) | |
| x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. | |
| return x | |
| class VQModelInterface(VQModel): | |
| def __init__(self, embed_dim, *args, **kwargs): | |
| super().__init__(embed_dim=embed_dim, *args, **kwargs) | |
| self.embed_dim = embed_dim | |
| def encode(self, x): | |
| h = self.encoder(x) | |
| h = self.quant_conv(h) | |
| return h | |
| def decode(self, h, force_not_quantize=False): | |
| # also go through quantization layer | |
| if not force_not_quantize: | |
| quant, emb_loss, info = self.quantize(h) | |
| else: | |
| quant = h | |
| quant = self.post_quant_conv(quant) | |
| dec = self.decoder(quant) | |
| if self.use_mask: | |
| mask = dec[:, 1:2] < 0. | |
| dec = dec[:, 0:1] | |
| dec[mask] = -1. | |
| return dec | |
| class AutoencoderKL(pl.LightningModule): | |
| def __init__(self, | |
| ddconfig, | |
| lossconfig, | |
| embed_dim, | |
| ckpt_path=None, | |
| ignore_keys=[], | |
| image_key="image", | |
| colorize_nlabels=None, | |
| monitor=None, | |
| lib_name='ldm', | |
| use_mask=False | |
| ): | |
| super().__init__() | |
| self.image_key = image_key | |
| self.use_mask = use_mask | |
| model_lib = eval(f'model_{lib_name}') | |
| self.encoder = model_lib.Encoder(**ddconfig) | |
| self.decoder = model_lib.Decoder(**ddconfig) | |
| self.loss = instantiate_from_config(lossconfig) | |
| assert ddconfig["double_z"] | |
| self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1) | |
| self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
| self.embed_dim = embed_dim | |
| if colorize_nlabels is not None: | |
| assert type(colorize_nlabels) == int | |
| self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
| if monitor is not None: | |
| self.monitor = monitor | |
| if ckpt_path is not None: | |
| self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
| def init_from_ckpt(self, path, ignore_keys=list()): | |
| sd = torch.load(path, map_location="cpu")["state_dict"] | |
| keys = list(sd.keys()) | |
| for k in keys: | |
| for ik in ignore_keys: | |
| if k.startswith(ik): | |
| print("Deleting key {} from state_dict.".format(k)) | |
| del sd[k] | |
| self.load_state_dict(sd, strict=False) | |
| print(f"Restored from {path}") | |
| def encode(self, x): | |
| h = self.encoder(x) | |
| moments = self.quant_conv(h) | |
| posterior = DiagonalGaussianDistribution(moments) | |
| return posterior | |
| def decode(self, z): | |
| z = self.post_quant_conv(z) | |
| dec = self.decoder(z) | |
| return dec | |
| def forward(self, input, sample_posterior=True): | |
| posterior = self.encode(input) | |
| if sample_posterior: | |
| z = posterior.sample() | |
| else: | |
| z = posterior.mode() | |
| dec = self.decode(z) | |
| return dec, posterior | |
| def get_input(self, batch, k): | |
| x = batch[k] | |
| if len(x.shape) == 3: | |
| x = x[:, None] | |
| return x | |
| def training_step(self, batch, batch_idx, optimizer_idx): | |
| inputs = self.get_input(batch, self.image_key) | |
| reconstructions, posterior = self(inputs) | |
| if optimizer_idx == 0: | |
| # train encoder+decoder+logvar | |
| aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, | |
| last_layer=self.get_last_layer(), split="train") | |
| self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) | |
| return aeloss | |
| if optimizer_idx == 1: | |
| # train the discriminator | |
| discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, | |
| last_layer=self.get_last_layer(), split="train") | |
| self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
| self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) | |
| return discloss | |
| def validation_step(self, batch, batch_idx): | |
| inputs = self.get_input(batch, self.image_key) | |
| reconstructions, posterior = self(inputs) | |
| aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, | |
| last_layer=self.get_last_layer(), split="val") | |
| discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, | |
| last_layer=self.get_last_layer(), split="val") | |
| self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) | |
| self.log_dict(log_dict_ae) | |
| self.log_dict(log_dict_disc) | |
| return self.log_dict | |
| def configure_optimizers(self): | |
| lr = self.learning_rate | |
| opt_ae = torch.optim.Adam(list(self.encoder.parameters()) + | |
| list(self.decoder.parameters()) + | |
| list(self.quant_conv.parameters()) + | |
| list(self.post_quant_conv.parameters()), | |
| lr=lr, betas=(0.5, 0.9)) | |
| opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), | |
| lr=lr, betas=(0.5, 0.9)) | |
| return [opt_ae, opt_disc], [] | |
| def get_last_layer(self): | |
| return self.decoder.conv_out.weight | |
| def log_images(self, batch, only_inputs=False, **kwargs): | |
| log = dict() | |
| x = self.get_input(batch, self.image_key) | |
| x = x.to(self.device) | |
| if not only_inputs: | |
| xrec, posterior = self(x) | |
| if x.shape[1] > 3: | |
| # colorize with random projection | |
| assert xrec.shape[1] > 3 | |
| x = self.to_rgb(x) | |
| xrec = self.to_rgb(xrec) | |
| log["samples"] = self.decode(torch.randn_like(posterior.sample())) | |
| log["reconstructions"] = xrec | |
| log["inputs"] = x | |
| return log | |
| def to_rgb(self, x): | |
| assert self.image_key == "segmentation" | |
| if not hasattr(self, "colorize"): | |
| self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
| x = F.conv2d(x, weight=self.colorize) | |
| x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. | |
| return x | |
| class IdentityFirstStage(torch.nn.Module): | |
| def __init__(self, *args, vq_interface=False, **kwargs): | |
| self.vq_interface = vq_interface | |
| super().__init__() | |
| def encode(self, x, *args, **kwargs): | |
| return x | |
| def decode(self, x, *args, **kwargs): | |
| return x | |
| def quantize(self, x, *args, **kwargs): | |
| if self.vq_interface: | |
| return x, None, [None, None, None] | |
| return x | |
| def forward(self, x, *args, **kwargs): | |
| return x | |