Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import ViTModel, ViTImageProcessor
|
2 |
+
from PIL import Image, ImageOps
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from datasets import Dataset
|
6 |
+
from torch.nn import CosineSimilarity
|
7 |
+
|
8 |
+
image_processor = ViTImageProcessor.from_pretrained("vit-base-patch16-224")
|
9 |
+
image_encoder = ViTModel.from_pretrained("output/image_encoder/epoch_29").eval().to("cuda")
|
10 |
+
scribble_encoder = ViTModel.from_pretrained("output/scibble_encoder/epoch_29").eval().to("cuda")
|
11 |
+
|
12 |
+
candidates: Dataset = None
|
13 |
+
|
14 |
+
cosinesimilarity = CosineSimilarity()
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def load_candidates(candidate_dir):
|
19 |
+
def preprocess(examples):
|
20 |
+
images = [image.convert("RGB") for image in examples["image"]]
|
21 |
+
examples["image_embedding"] = image_encoder(image_processor(images, return_tensors="pt")["pixel_values"].to("cuda"))["pooler_output"]
|
22 |
+
return examples
|
23 |
+
|
24 |
+
dataset = [dict(image=Image.open(tempfile.name).convert("RGB").resize((224, 224))) for tempfile in candidate_dir]
|
25 |
+
dataset = Dataset.from_list(dataset)
|
26 |
+
with torch.no_grad():
|
27 |
+
dataset = dataset.map(preprocess, batched=True, batch_size=1024)
|
28 |
+
|
29 |
+
return dataset
|
30 |
+
|
31 |
+
|
32 |
+
def load_candidates_in_cache(candidate_files):
|
33 |
+
global candidates
|
34 |
+
candidates = load_candidates(candidate_files)
|
35 |
+
|
36 |
+
|
37 |
+
def scribble_matching(input_img: Image):
|
38 |
+
input_img = ImageOps.invert(input_img)
|
39 |
+
|
40 |
+
scribble = input_img
|
41 |
+
scribble_embedding = scribble_encoder(image_processor(scribble, return_tensors="pt")["pixel_values"].to("cuda"))["pooler_output"].to("cpu")
|
42 |
+
image_embeddings = torch.tensor(candidates["image_embedding"], dtype=torch.float32)
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
sim = cosinesimilarity(scribble_embedding, image_embeddings)
|
47 |
+
|
48 |
+
predicts = torch.topk(sim, k=15)
|
49 |
+
|
50 |
+
output_imgs = candidates[predicts.indices.tolist()]["image"]
|
51 |
+
labels = predicts.values.tolist()
|
52 |
+
labels = [f"{label:.3f}" for label in labels]
|
53 |
+
|
54 |
+
return list(zip([input_img] + output_imgs, ["preview"] + labels))
|
55 |
+
|
56 |
+
|
57 |
+
def main():
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
with gr.Row():
|
60 |
+
input_img = gr.Image(type="pil", label="scribble", height=512, width=512, source="canvas", tool="color-sketch", brush_radius=10)
|
61 |
+
prediction_gallery = gr.Gallery(min_width=512, columns=4, show_label=True, )
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
candidate_dir = gr.File(file_count="directory", min_width=300, height=300)
|
65 |
+
load_candidates_btn = gr.Button("Load", variant="secondary", size="sm")
|
66 |
+
btn = gr.Button("Scribble Matching", variant="primary")
|
67 |
+
load_candidates_btn.click(fn=load_candidates_in_cache, inputs=[candidate_dir])
|
68 |
+
btn.click(fn=scribble_matching, inputs=[input_img], outputs=[prediction_gallery])
|
69 |
+
|
70 |
+
demo.launch(debug=True)
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
main()
|