Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from termcolor import colored | |
# --- Model and Tokenizer Loading --- | |
MODEL_PATH = "01/medical_model_rl/final" | |
TOKENIZER_PATH = "01/medical_model_rl/final" | |
print("Loading model and tokenizer...") | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, padding_side='left') | |
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH) | |
model.resize_token_embeddings(len(tokenizer)) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
model.eval() | |
print(colored("Model loaded successfully.", "green")) | |
except Exception as e: | |
print(colored(f"Error loading model: {e}", "red")) | |
model = None | |
tokenizer = None | |
# --- Chatbot Inference Function --- | |
def medical_chatbot(message, history): | |
""" | |
Generates a response from the medical chatbot model. | |
""" | |
if not model or not tokenizer: | |
return "Error: Model is not loaded. Please check the console for errors." | |
try: | |
# Format the prompt | |
full_prompt = f"Question: {message}\n\nAnswer:" | |
# Tokenize the input | |
inputs = tokenizer(full_prompt, return_tensors="pt", truncation=True).to(device) | |
# Generate a response | |
with torch.no_grad(): | |
output_sequences = model.generate( | |
input_ids=inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], | |
max_length=128, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
num_return_sequences=1, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
# Decode the response | |
response_text = tokenizer.decode(output_sequences[0], skip_special_tokens=True) | |
# Extract only the answer part | |
answer = response_text.split("Answer:")[-1].strip() | |
return answer | |
except Exception as e: | |
print(colored(f"An error occurred during inference: {e}", "red")) | |
return "Sorry, I encountered an error. Please try again." | |
# --- Gradio UI --- | |
chatbot_interface = gr.ChatInterface( | |
fn=medical_chatbot, | |
title="Medical Chatbot", | |
description="Ask any medical question, and the AI will try to answer.", | |
examples=[ | |
["What are the symptoms of diabetes?"], | |
["How does metformin work?"], | |
["What is the difference between a virus and a bacteria?"], | |
], | |
theme="soft", | |
).launch(share=True) |