|
import streamlit as st
|
|
import pandas as pd
|
|
import torch
|
|
from sentence_transformers import SentenceTransformer, util
|
|
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
|
|
df_with_embeddings = pd.read_pickle('df_with_embeddings.pkl')
|
|
|
|
|
|
model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
|
def get_user_input():
|
|
companions = st.selectbox("Who are you traveling with?", options=["solo", "couple", "family"])
|
|
|
|
if companions == "solo":
|
|
num_people = 1
|
|
elif companions == "couple":
|
|
num_people = 2
|
|
elif companions == "family":
|
|
num_people = st.number_input("Enter the number of people:", min_value=1, step=1)
|
|
|
|
budget = st.number_input("Enter your budget per person:", min_value=0.0, step=0.01)
|
|
days_of_lodging = st.number_input("Enter the number of days of lodging:", min_value=1, step=1)
|
|
preferred_weather = st.selectbox("Enter preferred weather:", options=["Sunny", "Rainy", "Snowy"])
|
|
|
|
return budget, num_people, companions, days_of_lodging, preferred_weather
|
|
|
|
def encode_user_input(user_input):
|
|
user_description = f"budget {user_input[0]} companions {user_input[2]} days {user_input[3]} weather {user_input[4]}"
|
|
|
|
user_embedding = model.encode(user_description, convert_to_tensor=True)
|
|
return user_embedding
|
|
|
|
def recommend_destinations(user_input, df):
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
user_embedding = encode_user_input(user_input).to(device)
|
|
|
|
|
|
df['similarity'] = df['embedding'].apply(lambda x: util.pytorch_cos_sim(user_embedding, x.to(device)).item())
|
|
|
|
|
|
recommendations = df.sort_values(by='similarity', ascending=False).drop_duplicates(subset='Primary').head(5)
|
|
|
|
return recommendations[['Primary', 'per_person_price', 'Topography', 'Temprature', 'Weather', 'Mood']]
|
|
|
|
def display_package_details(selection, df):
|
|
selected_row = df.loc[df['Primary'] == selection]
|
|
if not selected_row.empty:
|
|
st.write(f"*Package Name:* {selected_row['package_name'].values[0]}")
|
|
st.write(f"*Itinerary:* {selected_row['itinerary'].values[0]}")
|
|
st.write(f"*Sightseeing Places Covered:* {selected_row['sightseeing_places_covered'].values[0]}")
|
|
else:
|
|
st.write("Invalid selection. No package found.")
|
|
|
|
def evaluate_model(df, model):
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
|
|
|
|
|
|
train_embeddings = model.encode(train_df['description'].tolist(), convert_to_tensor=True).to(device)
|
|
test_embeddings = model.encode(test_df['description'].tolist(), convert_to_tensor=True).to(device)
|
|
|
|
|
|
def get_most_similar_label(test_embedding, train_embeddings, train_labels):
|
|
similarities = util.pytorch_cos_sim(test_embedding, train_embeddings)
|
|
most_similar_idx = similarities.argmax().item()
|
|
return train_labels[most_similar_idx]
|
|
|
|
|
|
predicted_labels = [get_most_similar_label(embed, train_embeddings, train_df['Primary'].tolist()) for embed in test_embeddings]
|
|
|
|
|
|
accuracy = accuracy_score(test_df['Primary'], predicted_labels)
|
|
precision = precision_score(test_df['Primary'], predicted_labels, average='weighted')
|
|
recall = recall_score(test_df['Primary'], predicted_labels, average='weighted')
|
|
f1 = f1_score(test_df['Primary'], predicted_labels, average='weighted')
|
|
|
|
return accuracy, precision, recall, f1
|
|
|
|
|
|
st.title("Travel Recommendation System")
|
|
|
|
st.write("Please provide your travel preferences below:")
|
|
|
|
user_input = get_user_input()
|
|
|
|
if st.button("Get Recommendations"):
|
|
recommendations = recommend_destinations(user_input, df_with_embeddings)
|
|
st.write("Top recommended destinations for you:")
|
|
st.session_state.recommendations = recommendations
|
|
st.dataframe(recommendations)
|
|
|
|
if 'recommendations' in st.session_state:
|
|
primary_selection = st.selectbox("Select a package to view details", options=st.session_state.recommendations['Primary'].tolist())
|
|
if st.button("View Details"):
|
|
st.session_state.selected_package = primary_selection
|
|
|
|
if 'selected_package' in st.session_state:
|
|
st.write(f"Details for {st.session_state.selected_package}:")
|
|
display_package_details(st.session_state.selected_package, df_with_embeddings)
|
|
|
|
if st.button("Evaluate Model Accuracy"):
|
|
accuracy, precision, recall, f1 = evaluate_model(df_with_embeddings, model)
|
|
st.write(f'Accuracy: {accuracy}')
|
|
st.write(f'Precision: {precision}')
|
|
st.write(f'Recall: {recall}')
|
|
st.write(f'F1 Score: {f1}') |