Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration, pipeline
|
3 |
+
|
4 |
+
# Load the image captioning model and tokenizer
|
5 |
+
caption_model_name = "Salesforce/blip-image-captioning-large"
|
6 |
+
caption_processor = BlipProcessor.from_pretrained(caption_model_name)
|
7 |
+
caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_name)
|
8 |
+
|
9 |
+
# Load the emotion analysis model
|
10 |
+
emotion_model_name = "SamLowe/roberta-base-go_emotions"
|
11 |
+
emotion_classifier = pipeline("text-classification", model=emotion_model_name)
|
12 |
+
|
13 |
+
def generate_caption_and_analyze_emotions(image):
|
14 |
+
try:
|
15 |
+
# Preprocess the image for caption generation
|
16 |
+
caption_inputs = caption_processor(images=image, return_tensors="pt")
|
17 |
+
|
18 |
+
# Generate caption using the caption model
|
19 |
+
caption_ids = caption_model.generate(**caption_inputs)
|
20 |
+
|
21 |
+
# Decode the output caption
|
22 |
+
decoded_caption = caption_processor.decode(caption_ids[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
# Perform emotion analysis on the generated caption
|
25 |
+
results = emotion_classifier(decoded_caption)
|
26 |
+
sentiment_label = results[0]['label']
|
27 |
+
if sentiment_label == 'neutral':
|
28 |
+
sentiment_text = "Sentiment of the image is"
|
29 |
+
else:
|
30 |
+
sentiment_text = "Sentiment of the image shows"
|
31 |
+
|
32 |
+
final_output = f"This image shows '{decoded_caption}' and {sentiment_text} {sentiment_label}."
|
33 |
+
return final_output
|
34 |
+
except Exception as e:
|
35 |
+
return f"An error occurred: {e}"
|
36 |
+
|
37 |
+
# Define the Gradio interface using the new API
|
38 |
+
inputs = gr.Image(label="Upload an image")
|
39 |
+
outputs = gr.Textbox(label="Sentiment Analysis")
|
40 |
+
|
41 |
+
# Create the Gradio app
|
42 |
+
app = gr.Interface(fn=generate_caption_and_analyze_emotions, inputs=inputs, outputs=outputs)
|
43 |
+
|
44 |
+
# Launch the Gradio app
|
45 |
+
if __name__ == "__main__":
|
46 |
+
app.launch()
|