Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,37 +10,45 @@ caption_model = BlipForConditionalGeneration.from_pretrained(caption_model_name)
|
|
10 |
emotion_model_name = "SamLowe/roberta-base-go_emotions"
|
11 |
emotion_classifier = pipeline("text-classification", model=emotion_model_name)
|
12 |
|
13 |
-
def generate_caption_and_analyze_emotions(image):
|
14 |
try:
|
15 |
-
|
16 |
-
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
results = emotion_classifier(decoded_caption)
|
26 |
sentiment_label = results[0]['label']
|
27 |
if sentiment_label == 'neutral':
|
28 |
-
sentiment_text = "Sentiment of the
|
29 |
else:
|
30 |
-
sentiment_text = "Sentiment of the
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
34 |
except Exception as e:
|
35 |
-
return f"An error occurred: {e}"
|
36 |
|
37 |
# Define the Gradio interface using the new API
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
|
41 |
# Create the Gradio app
|
42 |
-
app = gr.Interface(fn=generate_caption_and_analyze_emotions, inputs=
|
43 |
|
44 |
# Launch the Gradio app
|
45 |
if __name__ == "__main__":
|
46 |
app.launch()
|
|
|
|
10 |
emotion_model_name = "SamLowe/roberta-base-go_emotions"
|
11 |
emotion_classifier = pipeline("text-classification", model=emotion_model_name)
|
12 |
|
13 |
+
def generate_caption_and_analyze_emotions(image, text=None):
|
14 |
try:
|
15 |
+
if image is not None:
|
16 |
+
# Preprocess the image for caption generation
|
17 |
+
caption_inputs = caption_processor(images=image, return_tensors="pt")
|
18 |
|
19 |
+
# Generate caption using the caption model
|
20 |
+
caption_ids = caption_model.generate(**caption_inputs)
|
21 |
|
22 |
+
# Decode the output caption
|
23 |
+
decoded_caption = caption_processor.decode(caption_ids[0], skip_special_tokens=True)
|
24 |
+
else:
|
25 |
+
decoded_caption = text
|
26 |
+
|
27 |
+
# Perform emotion analysis on the generated caption or provided text
|
28 |
results = emotion_classifier(decoded_caption)
|
29 |
sentiment_label = results[0]['label']
|
30 |
if sentiment_label == 'neutral':
|
31 |
+
sentiment_text = "Sentiment of the text is"
|
32 |
else:
|
33 |
+
sentiment_text = "Sentiment of the text shows"
|
34 |
|
35 |
+
caption_output = f"Caption: '{decoded_caption}'"
|
36 |
+
sentiment_output = f"{sentiment_text} {sentiment_label}."
|
37 |
+
|
38 |
+
return caption_output, sentiment_output
|
39 |
except Exception as e:
|
40 |
+
return f"An error occurred: {e}", ""
|
41 |
|
42 |
# Define the Gradio interface using the new API
|
43 |
+
image_input = gr.inputs.Image(label="Upload an image")
|
44 |
+
text_input = gr.inputs.Textbox(label="Or enter text")
|
45 |
+
|
46 |
+
outputs = [gr.outputs.Textbox(label="Generated Caption"), gr.outputs.Textbox(label="Sentiment Analysis")]
|
47 |
|
48 |
# Create the Gradio app
|
49 |
+
app = gr.Interface(fn=generate_caption_and_analyze_emotions, inputs=[image_input, text_input], outputs=outputs)
|
50 |
|
51 |
# Launch the Gradio app
|
52 |
if __name__ == "__main__":
|
53 |
app.launch()
|
54 |
+
|