File size: 4,908 Bytes
6229408
2f3b32c
 
 
39f7f02
2f3b32c
39f7f02
 
207c35f
c640ef1
2f3b32c
9b9deec
39f7f02
ab0e126
9b9deec
6229408
ab0e126
39f7f02
9b9deec
 
 
f4dad5f
 
 
39f7f02
2f3b32c
9b9deec
679f566
 
9379874
9b9deec
 
 
9379874
 
 
 
 
 
 
 
 
 
 
679f566
9b9deec
 
 
679f566
 
2f3b32c
9b9deec
9665df1
 
 
 
 
 
 
 
 
ab0e126
9379874
9b9deec
 
 
679f566
62e14ef
 
9379874
62e14ef
2f3b32c
5a78105
c68088d
9379874
9665df1
679f566
39f7f02
ab0e126
 
b986f28
 
39f7f02
ab0e126
5cbc286
9b9deec
 
 
 
5cbc286
 
 
 
679f566
394ca4c
ab0e126
 
 
9b9deec
e5fdf4f
9b9deec
62e14ef
 
 
 
e5fdf4f
9b9deec
6229408
 
 
9379874
 
 
 
 
 
 
 
6229408
 
 
 
 
 
 
 
5cbc286
 
 
9b9deec
 
6229408
 
 
5cbc286
9b9deec
5cbc286
6229408
5cbc286
9b9deec
5cbc286
9379874
6229408
5cbc286
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from huggingface_hub import InferenceClient
import re
from streaming_stt_nemo import Model
import torch
import random

# Default language for speech-to-text
default_lang = "en"

# Initialize STT engine
engines = { default_lang: Model(default_lang) }

def transcribe(audio):
    """
    Transcribes audio file to text.
    """
    lang = "en"
    model = engines[lang]
    text = model.stt_file(audio)[0]
    return text

# Get Hugging Face token from environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)

def client_fn(model):
    """
    Selects the appropriate model based on user choice.
    """
    if "Mixtral" in model:
        return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
    elif "Llama" in model:
        return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
    elif "Mistral" in model:
        return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
    elif "Phi" in model:
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
    else: 
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")

def randomize_seed_fn(seed: int) -> int:
    """
    Randomizes the seed for generating responses.
    """
    seed = random.randint(0, 999999)
    return seed

# System instructions for the virtual assistant
system_instructions = ("[SYSTEM] You are a virtual assistant named Julia, made by 'Harshana Lakshara.'"
                       "Your task is to Answer the question."
                       "Keep conversation very short, clear and concise."
                       "Respond naturally and concisely to the user's queries. "
                       "Respond in a normal, conversational manner while being friendly and helpful."
                       "The expectation is that you will avoid introductions and start answering the query directly, Only answer the question asked by user, Do not say unnecessary things."
                       "Begin with a greeting if the user initiates the conversation. "
                       "Avoid unnecessary introductions and answer the user's questions directly."
                       "Here is the user's query:[QUESTION] ")

def models(text, model="Mixtral 8x7B", seed=42):
    """
    Generates a response based on user input and model selection.
    """
    seed = int(randomize_seed_fn(seed))
    generator = torch.Generator().manual_seed(seed)  
    
    client = client_fn(model)
    
    generate_kwargs = dict(
        max_new_tokens=300,
        seed=seed
    )    
    formatted_prompt = system_instructions + text + "[JARVIS]"
    stream = client.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text
    return output

async def respond(audio, text, model, seed):
    """
    Handles user input (audio or text), generates a response, 
    and converts the response to audio.
    """
    if audio:
        user = transcribe(audio)
    else:
        user = text
    reply = models(user, model, seed)
    communicate = edge_tts.Communicate(reply)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    return reply, tmp_path

# Description of the Gradio interface
DESCRIPTION = """ # <center><b>JARVIS⚡</b></center>
        ### <center>A personal Assistant of Tony Stark for YOU
        ### <center>Voice Chat with your personal Assistant</center>
        """

# Gradio interface
with gr.Blocks(css="style.css") as demo:    
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        select = gr.Dropdown([ 'Mixtral 8x7B',
        'Llama 3 8B',
        'Mistral 7B v0.3',
        'Phi 3 mini',
    ],
    value="Mistral 7B v0.3",
    label="Model"
    )
        seed = gr.Slider(
        label="Seed",
        minimum=0,
        maximum=999999,
        step=1,
        value=0,
        visible=False
        )
        input_audio = gr.Audio(label="User (Audio)", sources="microphone", type="filepath", waveform_options=False)
        input_text = gr.Textbox(label="User (Text)", placeholder="Type your message here...")
        send_button = gr.Button("Send")
        output_text = gr.Textbox(label="AI (Text)", interactive=False)
        output_audio = gr.Audio(label="AI (Audio)", type="filepath",
                        interactive=False,
                        autoplay=True,
                        elem_classes="audio")
        
        # Set up button click event
        send_button.click(
            fn=respond, 
            inputs=[input_audio, input_text, select, seed],
            outputs=[output_text, output_audio]
        )

if __name__ == "__main__":
    demo.queue(max_size=200).launch()