Spaces:
Sleeping
Sleeping
File size: 4,908 Bytes
6229408 2f3b32c 39f7f02 2f3b32c 39f7f02 207c35f c640ef1 2f3b32c 9b9deec 39f7f02 ab0e126 9b9deec 6229408 ab0e126 39f7f02 9b9deec f4dad5f 39f7f02 2f3b32c 9b9deec 679f566 9379874 9b9deec 9379874 679f566 9b9deec 679f566 2f3b32c 9b9deec 9665df1 ab0e126 9379874 9b9deec 679f566 62e14ef 9379874 62e14ef 2f3b32c 5a78105 c68088d 9379874 9665df1 679f566 39f7f02 ab0e126 b986f28 39f7f02 ab0e126 5cbc286 9b9deec 5cbc286 679f566 394ca4c ab0e126 9b9deec e5fdf4f 9b9deec 62e14ef e5fdf4f 9b9deec 6229408 9379874 6229408 5cbc286 9b9deec 6229408 5cbc286 9b9deec 5cbc286 6229408 5cbc286 9b9deec 5cbc286 9379874 6229408 5cbc286 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from huggingface_hub import InferenceClient
import re
from streaming_stt_nemo import Model
import torch
import random
# Default language for speech-to-text
default_lang = "en"
# Initialize STT engine
engines = { default_lang: Model(default_lang) }
def transcribe(audio):
"""
Transcribes audio file to text.
"""
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
# Get Hugging Face token from environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
def client_fn(model):
"""
Selects the appropriate model based on user choice.
"""
if "Mixtral" in model:
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
elif "Llama" in model:
return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
elif "Mistral" in model:
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
elif "Phi" in model:
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
else:
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
def randomize_seed_fn(seed: int) -> int:
"""
Randomizes the seed for generating responses.
"""
seed = random.randint(0, 999999)
return seed
# System instructions for the virtual assistant
system_instructions = ("[SYSTEM] You are a virtual assistant named Julia, made by 'Harshana Lakshara.'"
"Your task is to Answer the question."
"Keep conversation very short, clear and concise."
"Respond naturally and concisely to the user's queries. "
"Respond in a normal, conversational manner while being friendly and helpful."
"The expectation is that you will avoid introductions and start answering the query directly, Only answer the question asked by user, Do not say unnecessary things."
"Begin with a greeting if the user initiates the conversation. "
"Avoid unnecessary introductions and answer the user's questions directly."
"Here is the user's query:[QUESTION] ")
def models(text, model="Mixtral 8x7B", seed=42):
"""
Generates a response based on user input and model selection.
"""
seed = int(randomize_seed_fn(seed))
generator = torch.Generator().manual_seed(seed)
client = client_fn(model)
generate_kwargs = dict(
max_new_tokens=300,
seed=seed
)
formatted_prompt = system_instructions + text + "[JARVIS]"
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
return output
async def respond(audio, text, model, seed):
"""
Handles user input (audio or text), generates a response,
and converts the response to audio.
"""
if audio:
user = transcribe(audio)
else:
user = text
reply = models(user, model, seed)
communicate = edge_tts.Communicate(reply)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return reply, tmp_path
# Description of the Gradio interface
DESCRIPTION = """ # <center><b>JARVIS⚡</b></center>
### <center>A personal Assistant of Tony Stark for YOU
### <center>Voice Chat with your personal Assistant</center>
"""
# Gradio interface
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
select = gr.Dropdown([ 'Mixtral 8x7B',
'Llama 3 8B',
'Mistral 7B v0.3',
'Phi 3 mini',
],
value="Mistral 7B v0.3",
label="Model"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=999999,
step=1,
value=0,
visible=False
)
input_audio = gr.Audio(label="User (Audio)", sources="microphone", type="filepath", waveform_options=False)
input_text = gr.Textbox(label="User (Text)", placeholder="Type your message here...")
send_button = gr.Button("Send")
output_text = gr.Textbox(label="AI (Text)", interactive=False)
output_audio = gr.Audio(label="AI (Audio)", type="filepath",
interactive=False,
autoplay=True,
elem_classes="audio")
# Set up button click event
send_button.click(
fn=respond,
inputs=[input_audio, input_text, select, seed],
outputs=[output_text, output_audio]
)
if __name__ == "__main__":
demo.queue(max_size=200).launch()
|