import gradio as gr import edge_tts import asyncio import tempfile import os from huggingface_hub import InferenceClient import re from streaming_stt_nemo import Model import torch import random # Default language for speech-to-text default_lang = "en" # Initialize STT engine engines = { default_lang: Model(default_lang) } def transcribe(audio): """ Transcribes audio file to text. """ lang = "en" model = engines[lang] text = model.stt_file(audio)[0] return text # Get Hugging Face token from environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) def client_fn(model): """ Selects the appropriate model based on user choice. """ if "Mixtral" in model: return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") elif "Llama" in model: return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") elif "Mistral" in model: return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") elif "Phi" in model: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") else: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") def randomize_seed_fn(seed: int) -> int: """ Randomizes the seed for generating responses. """ seed = random.randint(0, 999999) return seed # System instructions for the virtual assistant system_instructions = ("[SYSTEM] You are a virtual assistant named Julia, made by 'Harshana Lakshara.'" "Your task is to Answer the question." "Keep conversation very short, clear and concise." "Respond naturally and concisely to the user's queries. " "Respond in a normal, conversational manner while being friendly and helpful." "The expectation is that you will avoid introductions and start answering the query directly, Only answer the question asked by user, Do not say unnecessary things." "Begin with a greeting if the user initiates the conversation. " "Avoid unnecessary introductions and answer the user's questions directly." "Here is the user's query:[QUESTION] ") def models(text, model="Mixtral 8x7B", seed=42): """ Generates a response based on user input and model selection. """ seed = int(randomize_seed_fn(seed)) generator = torch.Generator().manual_seed(seed) client = client_fn(model) generate_kwargs = dict( max_new_tokens=300, seed=seed ) formatted_prompt = system_instructions + text + "[JARVIS]" stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "": output += response.token.text return output async def respond(audio, text, model, seed): """ Handles user input (audio or text), generates a response, and converts the response to audio. """ if audio: user = transcribe(audio) else: user = text reply = models(user, model, seed) communicate = edge_tts.Communicate(reply) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return reply, tmp_path # Description of the Gradio interface DESCRIPTION = """ #
JARVIS⚔
###
A personal Assistant of Tony Stark for YOU ###
Voice Chat with your personal Assistant
""" # Gradio interface with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): select = gr.Dropdown([ 'Mixtral 8x7B', 'Llama 3 8B', 'Mistral 7B v0.3', 'Phi 3 mini', ], value="Mistral 7B v0.3", label="Model" ) seed = gr.Slider( label="Seed", minimum=0, maximum=999999, step=1, value=0, visible=False ) input_audio = gr.Audio(label="User (Audio)", sources="microphone", type="filepath", waveform_options=False) input_text = gr.Textbox(label="User (Text)", placeholder="Type your message here...") send_button = gr.Button("Send") output_text = gr.Textbox(label="AI (Text)", interactive=False) output_audio = gr.Audio(label="AI (Audio)", type="filepath", interactive=False, autoplay=True, elem_classes="audio") # Set up button click event send_button.click( fn=respond, inputs=[input_audio, input_text, select, seed], outputs=[output_text, output_audio] ) if __name__ == "__main__": demo.queue(max_size=200).launch()