Spaces:
Sleeping
Sleeping
import streamlit as st | |
import nltk | |
from nltk.sentiment.vader import SentimentIntensityAnalyzer | |
# Ensure the VADER lexicon is downloaded | |
nltk.download('vader_lexicon') | |
class SentimentAnalyzer: | |
def __init__(self): | |
self.analyzer = SentimentIntensityAnalyzer() | |
def analyze_sentiment(self, sentence): | |
return self.analyzer.polarity_scores(sentence) | |
def fool(): | |
analyzer = SentimentAnalyzer() | |
st.title("Sentiment Analysis App using VADER") | |
st.write("Enter a sentence to analyze its sentiment:") | |
# Input text box for user input | |
sentence = st.text_input("Input sentence:") | |
if st.button("Analyze"): | |
if sentence: | |
# Perform sentiment analysis | |
result = analyzer.analyze_sentiment(sentence) | |
# Interpret sentiment label | |
compound_score = result['compound'] | |
if compound_score >= 0.05: | |
sentiment_type = 'Positive' | |
elif compound_score <= -0.05: | |
sentiment_type = 'Negative' | |
else: | |
sentiment_type = 'Neutral' | |
# Display sentiment analysis result | |
st.write(f"Sentiment: {sentiment_type}, Score: {compound_score:.4f}") | |
# Call fool function directly if the script is executed | |
fool() | |