Harshavarma04 commited on
Commit
9e87fa4
·
verified ·
1 Parent(s): 426d602

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -1,11 +1,10 @@
1
  import streamlit as st
2
- from nltk.sentiment.vader import SentimentIntensityAnalyzer
3
  import nltk
 
4
 
5
  # Ensure the VADER lexicon is downloaded
6
  nltk.download('vader_lexicon')
7
 
8
-
9
  class SentimentAnalyzer:
10
  def __init__(self):
11
  self.analyzer = SentimentIntensityAnalyzer()
@@ -13,11 +12,10 @@ class SentimentAnalyzer:
13
  def analyze_sentiment(self, sentence):
14
  return self.analyzer.polarity_scores(sentence)
15
 
16
-
17
  def fool():
18
  analyzer = SentimentAnalyzer()
19
 
20
- st.title("Sentiment Analysis App")
21
  st.write("Enter a sentence to analyze its sentiment:")
22
 
23
  # Input text box for user input
@@ -27,7 +25,7 @@ def fool():
27
  if sentence:
28
  # Perform sentiment analysis
29
  result = analyzer.analyze_sentiment(sentence)
30
-
31
  # Interpret sentiment label
32
  compound_score = result['compound']
33
  if compound_score >= 0.05:
@@ -36,10 +34,9 @@ def fool():
36
  sentiment_type = 'Negative'
37
  else:
38
  sentiment_type = 'Neutral'
39
-
40
  # Display sentiment analysis result
41
  st.write(f"Sentiment: {sentiment_type}, Score: {compound_score:.4f}")
42
 
43
-
44
  # Call fool function directly if the script is executed
45
  fool()
 
1
  import streamlit as st
 
2
  import nltk
3
+ from nltk.sentiment.vader import SentimentIntensityAnalyzer
4
 
5
  # Ensure the VADER lexicon is downloaded
6
  nltk.download('vader_lexicon')
7
 
 
8
  class SentimentAnalyzer:
9
  def __init__(self):
10
  self.analyzer = SentimentIntensityAnalyzer()
 
12
  def analyze_sentiment(self, sentence):
13
  return self.analyzer.polarity_scores(sentence)
14
 
 
15
  def fool():
16
  analyzer = SentimentAnalyzer()
17
 
18
+ st.title("Sentiment Analysis App using VADER")
19
  st.write("Enter a sentence to analyze its sentiment:")
20
 
21
  # Input text box for user input
 
25
  if sentence:
26
  # Perform sentiment analysis
27
  result = analyzer.analyze_sentiment(sentence)
28
+
29
  # Interpret sentiment label
30
  compound_score = result['compound']
31
  if compound_score >= 0.05:
 
34
  sentiment_type = 'Negative'
35
  else:
36
  sentiment_type = 'Neutral'
37
+
38
  # Display sentiment analysis result
39
  st.write(f"Sentiment: {sentiment_type}, Score: {compound_score:.4f}")
40
 
 
41
  # Call fool function directly if the script is executed
42
  fool()