Commit
·
f52e3df
1
Parent(s):
397d99c
updated code space
Browse files
agent.py
CHANGED
@@ -13,10 +13,8 @@ from dotenv import load_dotenv
|
|
13 |
# Load environment variables from .env
|
14 |
load_dotenv()
|
15 |
|
16 |
-
|
17 |
# Initialize LLM
|
18 |
def initialize_llm():
|
19 |
-
"""Initializes the ChatGroq LLM."""
|
20 |
llm = ChatGroq(
|
21 |
temperature=0,
|
22 |
model_name="qwen-qwq-32b",
|
@@ -26,27 +24,20 @@ def initialize_llm():
|
|
26 |
|
27 |
# Initialize Tavily Search Tool
|
28 |
def initialize_search_tool():
|
29 |
-
|
30 |
-
search_tool = TavilySearchResults()
|
31 |
-
return search_tool
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
# Define Tools
|
36 |
def get_weather(location: str, search_tool: TavilySearchResults = None) -> str:
|
37 |
-
"""Fetch the current weather information for a given location using Tavily search."""
|
38 |
if search_tool is None:
|
39 |
search_tool = initialize_search_tool()
|
40 |
query = f"current weather in {location}"
|
41 |
-
|
42 |
-
return results
|
43 |
-
|
44 |
|
|
|
45 |
def initialize_recommendation_chain(llm: ChatGroq) -> Runnable:
|
46 |
-
"""Initializes the recommendation chain."""
|
47 |
recommendation_prompt = ChatPromptTemplate.from_template("""
|
48 |
You are a helpful assistant that gives weather-based advice.
|
49 |
-
|
50 |
Given the current weather condition: "{weather_condition}", provide:
|
51 |
1. Clothing or activity recommendations suited for this weather.
|
52 |
2. At least one health tip to stay safe or comfortable in this condition.
|
@@ -55,73 +46,104 @@ def initialize_recommendation_chain(llm: ChatGroq) -> Runnable:
|
|
55 |
""")
|
56 |
return recommendation_prompt | llm
|
57 |
|
58 |
-
|
59 |
-
|
60 |
def get_recommendation(weather_condition: str, recommendation_chain: Runnable = None) -> str:
|
61 |
-
"""Give activity/clothing recommendations and health tips based on the weather condition using an LLM."""
|
62 |
if recommendation_chain is None:
|
63 |
llm = initialize_llm()
|
64 |
recommendation_chain = initialize_recommendation_chain(llm)
|
65 |
return recommendation_chain.invoke({"weather_condition": weather_condition})
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
def build_graph():
|
70 |
-
"""Build the graph using Groq and custom prompt/tools setup"""
|
71 |
-
|
72 |
-
# Initialize the LLM
|
73 |
llm = initialize_llm()
|
74 |
-
|
75 |
-
# Initialize Tavily tool
|
76 |
search_tool = initialize_search_tool()
|
77 |
-
|
78 |
-
|
79 |
-
# Initialize the recommendation chain
|
80 |
recommendation_chain = initialize_recommendation_chain(llm)
|
81 |
|
82 |
-
# Define tools
|
83 |
@tool
|
84 |
def weather_tool(location: str) -> str:
|
85 |
-
|
86 |
-
return get_weather(location, search_tool) # Pass the search tool
|
87 |
|
88 |
@tool
|
89 |
def recommendation_tool(weather_condition: str) -> str:
|
90 |
-
"""Get recommendations based on weather."""
|
91 |
return get_recommendation(weather_condition, recommendation_chain)
|
92 |
|
93 |
-
tools = [weather_tool, recommendation_tool]
|
94 |
|
95 |
-
# Bind tools to LLM
|
96 |
llm_with_tools = llm.bind_tools(tools)
|
97 |
|
98 |
-
# Define assistant node
|
99 |
def assistant(state: MessagesState):
|
100 |
-
"""Assistant node"""
|
101 |
print("Entering assistant node...")
|
102 |
response = llm_with_tools.invoke(state["messages"])
|
103 |
print(f"Assistant says: {response.content}")
|
104 |
return {"messages": [response]}
|
105 |
|
106 |
-
# Create graph
|
107 |
builder = StateGraph(MessagesState)
|
108 |
builder.add_node("assistant", assistant)
|
109 |
builder.add_node("tools", ToolNode(tools))
|
110 |
builder.set_entry_point("assistant")
|
111 |
builder.add_conditional_edges("assistant", tools_condition)
|
112 |
builder.add_edge("tools", "assistant")
|
113 |
-
|
114 |
-
|
115 |
-
return graph
|
116 |
-
|
117 |
-
|
118 |
|
119 |
-
# Main execution
|
120 |
if __name__ == "__main__":
|
121 |
-
# Build and run the graph
|
122 |
graph = build_graph()
|
123 |
-
question = "What
|
124 |
messages = [HumanMessage(content=question)]
|
125 |
-
|
126 |
-
for
|
127 |
-
|
|
|
13 |
# Load environment variables from .env
|
14 |
load_dotenv()
|
15 |
|
|
|
16 |
# Initialize LLM
|
17 |
def initialize_llm():
|
|
|
18 |
llm = ChatGroq(
|
19 |
temperature=0,
|
20 |
model_name="qwen-qwq-32b",
|
|
|
24 |
|
25 |
# Initialize Tavily Search Tool
|
26 |
def initialize_search_tool():
|
27 |
+
return TavilySearchResults()
|
|
|
|
|
|
|
28 |
|
29 |
+
# Weather tool
|
|
|
30 |
def get_weather(location: str, search_tool: TavilySearchResults = None) -> str:
|
|
|
31 |
if search_tool is None:
|
32 |
search_tool = initialize_search_tool()
|
33 |
query = f"current weather in {location}"
|
34 |
+
return search_tool.run(query)
|
|
|
|
|
35 |
|
36 |
+
# Recommendation chain
|
37 |
def initialize_recommendation_chain(llm: ChatGroq) -> Runnable:
|
|
|
38 |
recommendation_prompt = ChatPromptTemplate.from_template("""
|
39 |
You are a helpful assistant that gives weather-based advice.
|
40 |
+
|
41 |
Given the current weather condition: "{weather_condition}", provide:
|
42 |
1. Clothing or activity recommendations suited for this weather.
|
43 |
2. At least one health tip to stay safe or comfortable in this condition.
|
|
|
46 |
""")
|
47 |
return recommendation_prompt | llm
|
48 |
|
|
|
|
|
49 |
def get_recommendation(weather_condition: str, recommendation_chain: Runnable = None) -> str:
|
|
|
50 |
if recommendation_chain is None:
|
51 |
llm = initialize_llm()
|
52 |
recommendation_chain = initialize_recommendation_chain(llm)
|
53 |
return recommendation_chain.invoke({"weather_condition": weather_condition})
|
54 |
|
55 |
+
# Math tools
|
56 |
+
@tool
|
57 |
+
def add(x: int, y: int) -> int:
|
58 |
+
return x + y
|
59 |
+
|
60 |
+
@tool
|
61 |
+
def subtract(x: int, y: int) -> int:
|
62 |
+
return x - y
|
63 |
+
|
64 |
+
@tool
|
65 |
+
def multiply(x: int, y: int) -> int:
|
66 |
+
return x * y
|
67 |
+
|
68 |
+
@tool
|
69 |
+
def divide(x: int, y: int) -> float:
|
70 |
+
if y == 0:
|
71 |
+
raise ValueError("Cannot divide by zero.")
|
72 |
+
return x / y
|
73 |
+
|
74 |
+
@tool
|
75 |
+
def square(x: int) -> int:
|
76 |
+
return x * x
|
77 |
+
|
78 |
+
@tool
|
79 |
+
def cube(x: int) -> int:
|
80 |
+
return x * x * x
|
81 |
+
|
82 |
+
@tool
|
83 |
+
def power(x: int, y: int) -> int:
|
84 |
+
return x ** y
|
85 |
+
|
86 |
+
@tool
|
87 |
+
def factorial(n: int) -> int:
|
88 |
+
if n < 0:
|
89 |
+
raise ValueError("Factorial is not defined for negative numbers.")
|
90 |
+
if n == 0 or n == 1:
|
91 |
+
return 1
|
92 |
+
result = 1
|
93 |
+
for i in range(2, n + 1):
|
94 |
+
result *= i
|
95 |
+
return result
|
96 |
+
|
97 |
+
@tool
|
98 |
+
def mean(numbers: list) -> float:
|
99 |
+
if not numbers:
|
100 |
+
raise ValueError("The list is empty.")
|
101 |
+
return sum(numbers) / len(numbers)
|
102 |
+
|
103 |
+
@tool
|
104 |
+
def standard_deviation(numbers: list) -> float:
|
105 |
+
if not numbers:
|
106 |
+
raise ValueError("The list is empty.")
|
107 |
+
mean_value = mean(numbers)
|
108 |
+
variance = sum((x - mean_value) ** 2 for x in numbers) / len(numbers)
|
109 |
+
return variance ** 0.5
|
110 |
+
|
111 |
+
# Build the LangGraph
|
112 |
def build_graph():
|
|
|
|
|
|
|
113 |
llm = initialize_llm()
|
|
|
|
|
114 |
search_tool = initialize_search_tool()
|
|
|
|
|
|
|
115 |
recommendation_chain = initialize_recommendation_chain(llm)
|
116 |
|
|
|
117 |
@tool
|
118 |
def weather_tool(location: str) -> str:
|
119 |
+
return get_weather(location, search_tool)
|
|
|
120 |
|
121 |
@tool
|
122 |
def recommendation_tool(weather_condition: str) -> str:
|
|
|
123 |
return get_recommendation(weather_condition, recommendation_chain)
|
124 |
|
125 |
+
tools = [weather_tool, recommendation_tool, add, subtract, multiply, divide, square, cube, power, factorial, mean, standard_deviation]
|
126 |
|
|
|
127 |
llm_with_tools = llm.bind_tools(tools)
|
128 |
|
|
|
129 |
def assistant(state: MessagesState):
|
|
|
130 |
print("Entering assistant node...")
|
131 |
response = llm_with_tools.invoke(state["messages"])
|
132 |
print(f"Assistant says: {response.content}")
|
133 |
return {"messages": [response]}
|
134 |
|
|
|
135 |
builder = StateGraph(MessagesState)
|
136 |
builder.add_node("assistant", assistant)
|
137 |
builder.add_node("tools", ToolNode(tools))
|
138 |
builder.set_entry_point("assistant")
|
139 |
builder.add_conditional_edges("assistant", tools_condition)
|
140 |
builder.add_edge("tools", "assistant")
|
141 |
+
return builder.compile()
|
|
|
|
|
|
|
|
|
142 |
|
|
|
143 |
if __name__ == "__main__":
|
|
|
144 |
graph = build_graph()
|
145 |
+
question = "What is the factorial of 6 and can you also tell me the weather in Paris?"
|
146 |
messages = [HumanMessage(content=question)]
|
147 |
+
result = graph.invoke({"messages": messages})
|
148 |
+
for msg in result["messages"]:
|
149 |
+
msg.pretty_print()
|
chroma_db/b4f29986-cfbe-4e28-871d-c988b39d1992/data_level0.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:23add52afbe7588391f32d3deffb581b2663d2e2ad8851aba7de25e6b3f66761
|
3 |
-
size 32120000
|
|
|
|
|
|
|
|
chroma_db/b4f29986-cfbe-4e28-871d-c988b39d1992/header.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f8c7f00b4415698ee6cb94332eff91aedc06ba8e066b1f200e78ca5df51abb57
|
3 |
-
size 100
|
|
|
|
|
|
|
|
chroma_db/b4f29986-cfbe-4e28-871d-c988b39d1992/length.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e7e2dcff542de95352682dc186432e98f0188084896773f1973276b0577d5305
|
3 |
-
size 40000
|
|
|
|
|
|
|
|
chroma_db/b4f29986-cfbe-4e28-871d-c988b39d1992/link_lists.bin
DELETED
File without changes
|