Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
from torch import nn
|
4 |
+
from torchvision import transforms
|
5 |
+
from torchvision.transforms import InterpolationMode
|
6 |
+
from PIL import Image
|
7 |
+
import gradio as gr
|
8 |
+
import os
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import seaborn as sns
|
11 |
+
|
12 |
+
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
13 |
+
|
14 |
+
# Device configuration
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
# Assuming 'class_names' is already defined in your script
|
18 |
+
class_names = [line.strip() for line in open("classes.txt")]
|
19 |
+
|
20 |
+
# Load the model
|
21 |
+
model = torchvision.models.vit_b_16(weights=None) # Initialize the model architecture
|
22 |
+
model.heads = nn.Linear(in_features=768, out_features=len(class_names)) # Adjust the classifier head
|
23 |
+
checkpoint = torch.load('08_pretrained_vit_feature_extractor_pizza_steak_sushi.pth')
|
24 |
+
model.load_state_dict(checkpoint, strict=False)
|
25 |
+
model = model.to(device)
|
26 |
+
model.eval()
|
27 |
+
|
28 |
+
# Define transformations
|
29 |
+
transform = transforms.Compose([
|
30 |
+
transforms.Resize(256, interpolation=InterpolationMode.BILINEAR),
|
31 |
+
transforms.CenterCrop(224),
|
32 |
+
transforms.ToTensor(),
|
33 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
34 |
+
])
|
35 |
+
|
36 |
+
# Prediction function
|
37 |
+
def predict(image):
|
38 |
+
img = Image.fromarray(image)
|
39 |
+
transformed_image = transform(img).unsqueeze(dim=0).to(device)
|
40 |
+
|
41 |
+
with torch.inference_mode():
|
42 |
+
target_image_pred = model(transformed_image)
|
43 |
+
|
44 |
+
target_image_pred_probs = torch.softmax(target_image_pred, dim=1)
|
45 |
+
top_probs, top_indices = torch.topk(target_image_pred_probs, k=5)
|
46 |
+
top_probs = top_probs.squeeze().cpu().numpy()
|
47 |
+
top_indices = top_indices.squeeze().cpu().numpy()
|
48 |
+
|
49 |
+
top_classes = [class_names[i] for i in top_indices]
|
50 |
+
|
51 |
+
# Plotting the probabilities as a bar chart
|
52 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
53 |
+
sns.barplot(x=top_probs, y=top_classes, palette="viridis", ax=ax)
|
54 |
+
ax.set_xlabel('Probability')
|
55 |
+
ax.set_ylabel('Class')
|
56 |
+
ax.set_title('Top 5 Predictions')
|
57 |
+
ax.set_xlim(0, 1)
|
58 |
+
for i in ax.patches:
|
59 |
+
ax.text(i.get_width() + 0.02, i.get_y() + 0.55, f'{i.get_width():.2f}',
|
60 |
+
ha='center', va='center', fontsize=10, color='black')
|
61 |
+
sns.despine(left=True, bottom=True)
|
62 |
+
|
63 |
+
plt.tight_layout()
|
64 |
+
|
65 |
+
return top_classes[0], fig
|
66 |
+
|
67 |
+
# Create Gradio interface
|
68 |
+
iface = gr.Interface(
|
69 |
+
fn=predict,
|
70 |
+
inputs=gr.Image(type="numpy"),
|
71 |
+
outputs=[gr.Textbox(label="Top Prediction"), gr.Plot()], # Textbox for top prediction and Plot for the bar chart
|
72 |
+
examples=[r"C:\Users\Asus\Desktop\download (1).jpg", r"C:\Users\Asus\Desktop\download (3).jpg"] # Optional: Add paths to example images
|
73 |
+
)
|
74 |
+
|
75 |
+
# Launch the Gradio app
|
76 |
+
iface.launch()
|