Spaces:
Sleeping
Sleeping
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
from sklearn.metrics.pairwise import cosine_similarity | |
import timm | |
import numpy as np | |
import gradio as gr | |
class ImageEmbedder: | |
def __init__(self, model_name='vit_base_patch16_224'): | |
self.model = timm.create_model(model_name, pretrained=True) | |
self.model.head = torch.nn.Identity() # Remove classification head | |
self.model.eval() | |
self.transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
def get_embedding(self, image): | |
image = image.convert('RGB') | |
image_tensor = self.transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
embedding = self.model(image_tensor) | |
return embedding.squeeze().numpy() | |
def compare_images(image1, image2, similarity_threshold=0.85): | |
embedder = ImageEmbedder() | |
# Get embeddings | |
embedding1 = embedder.get_embedding(image1) | |
embedding2 = embedder.get_embedding(image2) | |
# Calculate similarity | |
similarity = cosine_similarity(embedding1.reshape(1, -1), embedding2.reshape(1, -1))[0][0] | |
# Determine if images are similar | |
if similarity > similarity_threshold: | |
return f"The images are similar. Similarity score: {similarity:.4f}" | |
else: | |
return f"The images are not similar. Similarity score: {similarity:.4f}" | |
def main(image1, image2): | |
return compare_images(image1, image2) | |
iface = gr.Interface( | |
fn=main, | |
inputs=[gr.Image(type="pil"), gr.Image(type="pil")], | |
outputs="text", | |
title="Image Similarity Checker", | |
description="Upload two images to check their similarity based on embeddings." | |
) | |
iface.launch() | |