Update app.py
Browse files
app.py
CHANGED
|
@@ -19,22 +19,7 @@ def plot_cum_returns(data, title):
|
|
| 19 |
fig = px.line(daily_cum_returns, title=title)
|
| 20 |
return fig
|
| 21 |
|
| 22 |
-
|
| 23 |
-
ef = EfficientFrontier(mu, S)
|
| 24 |
-
fig, ax = plt.subplots(figsize=(6,4))
|
| 25 |
-
ef_max_sharpe = copy.deepcopy(ef)
|
| 26 |
-
plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False)
|
| 27 |
-
ef_max_sharpe.max_sharpe(risk_free_rate=0.02)
|
| 28 |
-
ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance()
|
| 29 |
-
ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe")
|
| 30 |
-
n_samples = 1000
|
| 31 |
-
w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
|
| 32 |
-
rets = w.dot(ef.expected_returns)
|
| 33 |
-
stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
|
| 34 |
-
sharpes = rets / stds
|
| 35 |
-
ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r")
|
| 36 |
-
ax.legend()
|
| 37 |
-
return fig
|
| 38 |
|
| 39 |
def output_results(start_date, end_date, tickers_string, investment_amount):
|
| 40 |
tickers = tickers_string.split(',')
|
|
@@ -49,15 +34,15 @@ def output_results(start_date, end_date, tickers_string, investment_amount):
|
|
| 49 |
fig_cum_returns = plot_cum_returns(stocks_df, 'Cumulative Returns of Individual Stocks Starting with ₹100')
|
| 50 |
|
| 51 |
# Calculate and Plot Correlation Matrix between Stocks
|
| 52 |
-
corr_df = stocks_df.corr().round(2)
|
| 53 |
-
fig_corr = px.imshow(corr_df, text_auto=True, title = 'Correlation between Stocks')
|
| 54 |
|
| 55 |
# Calculate expected returns and sample covariance matrix for portfolio optimization later
|
| 56 |
mu = expected_returns.mean_historical_return(stocks_df)
|
| 57 |
S = risk_models.sample_cov(stocks_df)
|
| 58 |
|
| 59 |
# Plot efficient frontier curve
|
| 60 |
-
fig_efficient_frontier = plot_efficient_frontier_and_max_sharpe(mu, S)
|
| 61 |
|
| 62 |
# Get optimized weights
|
| 63 |
ef = EfficientFrontier(mu, S)
|
|
@@ -66,8 +51,8 @@ def output_results(start_date, end_date, tickers_string, investment_amount):
|
|
| 66 |
expected_annual_return, annual_volatility, sharpe_ratio = ef.portfolio_performance()
|
| 67 |
|
| 68 |
expected_annual_return, annual_volatility, sharpe_ratio = '{}%'.format((expected_annual_return*100).round(2)), \
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
weights_df = pd.DataFrame.from_dict(weights, orient='index').reset_index()
|
| 73 |
weights_df.columns = ['Tickers', 'Weights']
|
|
@@ -89,8 +74,8 @@ def output_results(start_date, end_date, tickers_string, investment_amount):
|
|
| 89 |
# Plot Cumulative Returns of Optimized Portfolio
|
| 90 |
fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with ₹100')
|
| 91 |
|
| 92 |
-
return fig_cum_returns_optimized,
|
| 93 |
-
expected_annual_return,
|
| 94 |
|
| 95 |
|
| 96 |
with gr.Blocks() as app:
|
|
@@ -108,32 +93,31 @@ with gr.Blocks() as app:
|
|
| 108 |
investment_amount = gr.Number(label="Investment Amount (in ₹)")
|
| 109 |
btn = gr.Button("Get Optimized Portfolio")
|
| 110 |
|
| 111 |
-
with gr.Row():
|
| 112 |
-
|
| 113 |
|
| 114 |
with gr.Row():
|
| 115 |
expected_annual_return = gr.Text(label="Expected Annual Return")
|
| 116 |
-
|
| 117 |
-
sharpe_ratio = gr.Text(label="Sharpe Ratio")
|
| 118 |
|
| 119 |
with gr.Row():
|
| 120 |
fig_cum_returns_optimized = gr.Plot(label="Cumulative Returns of Optimized Portfolio (Starting Price of ₹100)")
|
| 121 |
-
|
| 122 |
|
| 123 |
-
with gr.Row():
|
| 124 |
-
|
| 125 |
-
|
| 126 |
|
| 127 |
with gr.Row():
|
| 128 |
fig_indiv_prices = gr.Plot(label="Price of Individual Stocks")
|
| 129 |
fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with ₹100")
|
| 130 |
|
| 131 |
-
with gr.Row():
|
| 132 |
-
|
| 133 |
-
leftover = gr.Number(label="Leftover Amount (in ₹)")
|
| 134 |
|
| 135 |
btn.click(fn=output_results, inputs=[start_date, end_date, tickers_string, investment_amount],
|
| 136 |
-
outputs=[fig_cum_returns_optimized,
|
| 137 |
-
expected_annual_return,
|
| 138 |
|
| 139 |
app.launch()
|
|
|
|
| 19 |
fig = px.line(daily_cum_returns, title=title)
|
| 20 |
return fig
|
| 21 |
|
| 22 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
def output_results(start_date, end_date, tickers_string, investment_amount):
|
| 25 |
tickers = tickers_string.split(',')
|
|
|
|
| 34 |
fig_cum_returns = plot_cum_returns(stocks_df, 'Cumulative Returns of Individual Stocks Starting with ₹100')
|
| 35 |
|
| 36 |
# Calculate and Plot Correlation Matrix between Stocks
|
| 37 |
+
# corr_df = stocks_df.corr().round(2)
|
| 38 |
+
# fig_corr = px.imshow(corr_df, text_auto=True, title = 'Correlation between Stocks')
|
| 39 |
|
| 40 |
# Calculate expected returns and sample covariance matrix for portfolio optimization later
|
| 41 |
mu = expected_returns.mean_historical_return(stocks_df)
|
| 42 |
S = risk_models.sample_cov(stocks_df)
|
| 43 |
|
| 44 |
# Plot efficient frontier curve
|
| 45 |
+
#fig_efficient_frontier = plot_efficient_frontier_and_max_sharpe(mu, S)
|
| 46 |
|
| 47 |
# Get optimized weights
|
| 48 |
ef = EfficientFrontier(mu, S)
|
|
|
|
| 51 |
expected_annual_return, annual_volatility, sharpe_ratio = ef.portfolio_performance()
|
| 52 |
|
| 53 |
expected_annual_return, annual_volatility, sharpe_ratio = '{}%'.format((expected_annual_return*100).round(2)), \
|
| 54 |
+
'{}%'.format((annual_volatility*100).round(2)), \
|
| 55 |
+
'{}%'.format((sharpe_ratio*100).round(2))
|
| 56 |
|
| 57 |
weights_df = pd.DataFrame.from_dict(weights, orient='index').reset_index()
|
| 58 |
weights_df.columns = ['Tickers', 'Weights']
|
|
|
|
| 74 |
# Plot Cumulative Returns of Optimized Portfolio
|
| 75 |
fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with ₹100')
|
| 76 |
|
| 77 |
+
return fig_cum_returns_optimized, allocation_df, \
|
| 78 |
+
expected_annual_return, leftover.round(), fig_indiv_prices, fig_cum_returns
|
| 79 |
|
| 80 |
|
| 81 |
with gr.Blocks() as app:
|
|
|
|
| 93 |
investment_amount = gr.Number(label="Investment Amount (in ₹)")
|
| 94 |
btn = gr.Button("Get Optimized Portfolio")
|
| 95 |
|
| 96 |
+
# with gr.Row():
|
| 97 |
+
# gr.HTML("<h3>Optimized Portfolio Metrics</h3>")
|
| 98 |
|
| 99 |
with gr.Row():
|
| 100 |
expected_annual_return = gr.Text(label="Expected Annual Return")
|
| 101 |
+
leftover = gr.Number(label="Leftover Amount (in ₹)")
|
|
|
|
| 102 |
|
| 103 |
with gr.Row():
|
| 104 |
fig_cum_returns_optimized = gr.Plot(label="Cumulative Returns of Optimized Portfolio (Starting Price of ₹100)")
|
| 105 |
+
allocation_df = gr.DataFrame(label="Stock Allocation")
|
| 106 |
|
| 107 |
+
# with gr.Row():
|
| 108 |
+
# fig_efficient_frontier = gr.Plot(label="Efficient Frontier")
|
| 109 |
+
# fig_corr = gr.Plot(label="Correlation between Stocks")
|
| 110 |
|
| 111 |
with gr.Row():
|
| 112 |
fig_indiv_prices = gr.Plot(label="Price of Individual Stocks")
|
| 113 |
fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with ₹100")
|
| 114 |
|
| 115 |
+
# with gr.Row():
|
| 116 |
+
# allocation_df = gr.DataFrame(label="Stock Allocation")
|
| 117 |
+
#leftover = gr.Number(label="Leftover Amount (in ₹)")
|
| 118 |
|
| 119 |
btn.click(fn=output_results, inputs=[start_date, end_date, tickers_string, investment_amount],
|
| 120 |
+
outputs=[fig_cum_returns_optimized, allocation_df, \
|
| 121 |
+
expected_annual_return,leftover, fig_indiv_prices, fig_cum_returns])
|
| 122 |
|
| 123 |
app.launch()
|