Update app.py
Browse files
app.py
CHANGED
@@ -20,27 +20,23 @@ def plot_cum_returns(data, title):
|
|
20 |
return fig
|
21 |
|
22 |
def plot_efficient_frontier_and_max_sharpe(mu, S):
|
23 |
-
# Optimize portfolio for max Sharpe ratio and plot it out with efficient frontier curve
|
24 |
ef = EfficientFrontier(mu, S)
|
25 |
fig, ax = plt.subplots(figsize=(6,4))
|
26 |
ef_max_sharpe = copy.deepcopy(ef)
|
27 |
plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False)
|
28 |
-
# Find the max sharpe portfolio
|
29 |
ef_max_sharpe.max_sharpe(risk_free_rate=0.02)
|
30 |
ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance()
|
31 |
ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe")
|
32 |
-
# Generate random portfolios with random weights
|
33 |
n_samples = 1000
|
34 |
w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
|
35 |
rets = w.dot(ef.expected_returns)
|
36 |
stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
|
37 |
sharpes = rets / stds
|
38 |
ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r")
|
39 |
-
# Output
|
40 |
ax.legend()
|
41 |
return fig
|
42 |
|
43 |
-
def output_results(start_date, end_date, tickers_string):
|
44 |
tickers = tickers_string.split(',')
|
45 |
|
46 |
# Get Stock Prices
|
@@ -73,10 +69,18 @@ def output_results(start_date, end_date, tickers_string):
|
|
73 |
'{}%'.format((annual_volatility*100).round(2)), \
|
74 |
'{}%'.format((sharpe_ratio*100).round(2))
|
75 |
|
76 |
-
weights_df = pd.DataFrame.from_dict(weights, orient
|
77 |
-
weights_df = weights_df.reset_index()
|
78 |
weights_df.columns = ['Tickers', 'Weights']
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Calculate returns of portfolio with optimized weights
|
81 |
stocks_df['Optimized Portfolio'] = 0
|
82 |
for ticker, weight in weights.items():
|
@@ -85,8 +89,8 @@ def output_results(start_date, end_date, tickers_string):
|
|
85 |
# Plot Cumulative Returns of Optimized Portfolio
|
86 |
fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with ₹100')
|
87 |
|
88 |
-
return fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr,
|
89 |
-
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns
|
90 |
|
91 |
|
92 |
with gr.Blocks() as app:
|
@@ -101,6 +105,7 @@ with gr.Blocks() as app:
|
|
101 |
tickers_string = gr.Textbox("TCS.NS,INFY.NS,RELIANCE.NS,HDFCBANK.NS,ICICIBANK.NS,SBIN.NS",
|
102 |
label='Enter all stock tickers to be included in portfolio separated \
|
103 |
by commas WITHOUT spaces, e.g. "TCS.NS,INFY.NS,RELIANCE.NS,HDFCBANK.NS,ICICIBANK.NS,SBIN.NS"')
|
|
|
104 |
btn = gr.Button("Get Optimized Portfolio")
|
105 |
|
106 |
with gr.Row():
|
@@ -122,9 +127,13 @@ with gr.Blocks() as app:
|
|
122 |
with gr.Row():
|
123 |
fig_indiv_prices = gr.Plot(label="Price of Individual Stocks")
|
124 |
fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with ₹100")
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
btn.click(fn=output_results, inputs=[start_date, end_date, tickers_string],
|
127 |
-
outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr,
|
128 |
-
|
129 |
|
130 |
-
app.launch()
|
|
|
20 |
return fig
|
21 |
|
22 |
def plot_efficient_frontier_and_max_sharpe(mu, S):
|
|
|
23 |
ef = EfficientFrontier(mu, S)
|
24 |
fig, ax = plt.subplots(figsize=(6,4))
|
25 |
ef_max_sharpe = copy.deepcopy(ef)
|
26 |
plotting.plot_efficient_frontier(ef, ax=ax, show_assets=False)
|
|
|
27 |
ef_max_sharpe.max_sharpe(risk_free_rate=0.02)
|
28 |
ret_tangent, std_tangent, _ = ef_max_sharpe.portfolio_performance()
|
29 |
ax.scatter(std_tangent, ret_tangent, marker="*", s=100, c="r", label="Max Sharpe")
|
|
|
30 |
n_samples = 1000
|
31 |
w = np.random.dirichlet(np.ones(ef.n_assets), n_samples)
|
32 |
rets = w.dot(ef.expected_returns)
|
33 |
stds = np.sqrt(np.diag(w @ ef.cov_matrix @ w.T))
|
34 |
sharpes = rets / stds
|
35 |
ax.scatter(stds, rets, marker=".", c=sharpes, cmap="viridis_r")
|
|
|
36 |
ax.legend()
|
37 |
return fig
|
38 |
|
39 |
+
def output_results(start_date, end_date, tickers_string, investment_amount):
|
40 |
tickers = tickers_string.split(',')
|
41 |
|
42 |
# Get Stock Prices
|
|
|
69 |
'{}%'.format((annual_volatility*100).round(2)), \
|
70 |
'{}%'.format((sharpe_ratio*100).round(2))
|
71 |
|
72 |
+
weights_df = pd.DataFrame.from_dict(weights, orient='index').reset_index()
|
|
|
73 |
weights_df.columns = ['Tickers', 'Weights']
|
74 |
|
75 |
+
# Get the latest prices
|
76 |
+
latest_prices = get_latest_prices(stocks_df)
|
77 |
+
|
78 |
+
# Allocate the stocks based on the given budget
|
79 |
+
da = DiscreteAllocation(weights, latest_prices, total_portfolio_value=investment_amount)
|
80 |
+
allocation, leftover = da.lp_portfolio()
|
81 |
+
|
82 |
+
allocation_df = pd.DataFrame(list(allocation.items()), columns=['Ticker', 'Shares'])
|
83 |
+
|
84 |
# Calculate returns of portfolio with optimized weights
|
85 |
stocks_df['Optimized Portfolio'] = 0
|
86 |
for ticker, weight in weights.items():
|
|
|
89 |
# Plot Cumulative Returns of Optimized Portfolio
|
90 |
fig_cum_returns_optimized = plot_cum_returns(stocks_df['Optimized Portfolio'], 'Cumulative Returns of Optimized Portfolio Starting with ₹100')
|
91 |
|
92 |
+
return fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
|
93 |
+
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns, allocation_df, leftover
|
94 |
|
95 |
|
96 |
with gr.Blocks() as app:
|
|
|
105 |
tickers_string = gr.Textbox("TCS.NS,INFY.NS,RELIANCE.NS,HDFCBANK.NS,ICICIBANK.NS,SBIN.NS",
|
106 |
label='Enter all stock tickers to be included in portfolio separated \
|
107 |
by commas WITHOUT spaces, e.g. "TCS.NS,INFY.NS,RELIANCE.NS,HDFCBANK.NS,ICICIBANK.NS,SBIN.NS"')
|
108 |
+
investment_amount = gr.Number(label="Investment Amount (in ₹)")
|
109 |
btn = gr.Button("Get Optimized Portfolio")
|
110 |
|
111 |
with gr.Row():
|
|
|
127 |
with gr.Row():
|
128 |
fig_indiv_prices = gr.Plot(label="Price of Individual Stocks")
|
129 |
fig_cum_returns = gr.Plot(label="Cumulative Returns of Individual Stocks Starting with ₹100")
|
130 |
+
|
131 |
+
with gr.Row():
|
132 |
+
allocation_df = gr.DataFrame(label="Stock Allocation")
|
133 |
+
leftover = gr.Number(label="Leftover Amount (in ₹)")
|
134 |
|
135 |
+
btn.click(fn=output_results, inputs=[start_date, end_date, tickers_string, investment_amount],
|
136 |
+
outputs=[fig_cum_returns_optimized, weights_df, fig_efficient_frontier, fig_corr, \
|
137 |
+
expected_annual_return, annual_volatility, sharpe_ratio, fig_indiv_prices, fig_cum_returns, allocation_df, leftover])
|
138 |
|
139 |
+
app.launch()
|