Spaces:
Sleeping
Sleeping
File size: 7,451 Bytes
f8b306b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# DeepFashion2 Dataset Integration
This document describes the integration of the DeepFashion2 dataset with the Vestiq fashion analysis system.
## Overview
DeepFashion2 is a comprehensive fashion dataset that provides:
- 491K diverse images of 13 popular clothing categories
- Bounding box annotations for fashion items
- Dense pose estimation
- Commercial-consumer clothes correspondence
- Scale, occlusion, zoom-in, and viewpoint labels
## Integration Features
### 1. Dataset Loading and Processing
- **DeepFashion2Dataset**: PyTorch dataset class for loading images and annotations
- **Category Mapping**: Maps DeepFashion2 categories to yainage90 model categories
- **Data Transforms**: Standard preprocessing for fashion images
- **Batch Processing**: Efficient DataLoader implementation
### 2. Evaluation Framework
- **Detection Accuracy**: Evaluate fashion object detection performance
- **Feature Quality**: Assess feature extraction capabilities
- **Classification Metrics**: Precision, recall, F1-score, confusion matrix
- **Visualization**: Confusion matrix plots and performance charts
### 3. API Endpoints
- `/deepfashion2/status` - Check integration status and dataset availability
- `/deepfashion2/statistics` - Get dataset statistics and category distribution
- `/deepfashion2/evaluate` - Run evaluation using DeepFashion2 as benchmark
- `/deepfashion2/setup-instructions` - Get setup instructions for the dataset
## Category Mapping
DeepFashion2 uses 13 detailed categories that are mapped to yainage90's 7 categories:
| DeepFashion2 Category | yainage90 Category |
|----------------------|-------------------|
| short_sleeved_shirt | top |
| long_sleeved_shirt | top |
| short_sleeved_outwear| outer |
| long_sleeved_outwear | outer |
| vest | top |
| sling | top |
| shorts | bottom |
| trousers | bottom |
| skirt | bottom |
| short_sleeved_dress | dress |
| long_sleeved_dress | dress |
| vest_dress | dress |
| sling_dress | dress |
## Setup Instructions
### 1. Download the Dataset
The DeepFashion2 dataset requires manual download due to licensing requirements:
1. Visit the official repository: https://github.com/switchablenorms/DeepFashion2
2. Follow the dataset download instructions
3. Register and download the dataset files
### 2. Dataset Structure
Extract the dataset to `./data/deepfashion2/` with the following structure:
```
deepfashion2/
βββ train/
β βββ image/ # Training images
β βββ annos/ # Training annotations (JSON)
βββ validation/
β βββ image/ # Validation images
β βββ annos/ # Validation annotations (JSON)
βββ test/
βββ image/ # Test images
βββ annos/ # Test annotations (JSON)
```
### 3. Install Dependencies
Install additional dependencies for evaluation:
```bash
pip install scikit-learn matplotlib seaborn
```
### 4. Verify Setup
Check the integration status:
```bash
curl http://localhost:7861/deepfashion2/status
```
## Usage Examples
### 1. Basic Dataset Loading
```python
from deepfashion2_utils import DeepFashion2Config, DeepFashion2Dataset
config = DeepFashion2Config()
dataset = DeepFashion2Dataset(
root_dir=config.dataset_root,
split='validation',
load_annotations=True
)
# Get a sample
sample = dataset[0]
print(f"Image: {sample['image_path']}")
print(f"Categories: {dataset.get_categories_in_image(sample['annotations'])}")
```
### 2. Running Evaluation
```python
from deepfashion2_evaluation import run_full_evaluation
from fast import analyzer
# Run evaluation with 100 samples
report_path = run_full_evaluation(analyzer, max_samples=100)
print(f"Evaluation report saved to: {report_path}")
```
### 3. API Usage
```bash
# Check status
curl -X GET "http://localhost:7861/deepfashion2/status"
# Get dataset statistics
curl -X GET "http://localhost:7861/deepfashion2/statistics"
# Run evaluation
curl -X POST "http://localhost:7861/deepfashion2/evaluate?max_samples=50"
# Get setup instructions
curl -X GET "http://localhost:7861/deepfashion2/setup-instructions"
```
## Evaluation Metrics
### Detection Accuracy
- **Category-level accuracy**: How well the model detects clothing categories
- **Detection score**: IoU-like metric for category overlap
- **Confusion matrix**: Detailed breakdown of predictions vs ground truth
### Feature Quality
- **Feature dimension**: Dimensionality of extracted features
- **Intra-category similarity**: How similar features are within the same category
- **Inter-category distance**: How well features separate different categories
- **Feature separability**: Overall quality metric for feature discrimination
## Configuration Options
### DeepFashion2Config
```python
@dataclass
class DeepFashion2Config:
dataset_root: str = "./data/deepfashion2"
categories: List[str] = None # Auto-populated with 13 categories
image_size: Tuple[int, int] = (224, 224)
batch_size: int = 32
num_workers: int = 4
```
### Customization
You can customize the configuration for your specific needs:
```python
config = DeepFashion2Config(
dataset_root="/path/to/your/deepfashion2",
image_size=(256, 256),
batch_size=16
)
```
## Performance Considerations
### Memory Usage
- The dataset is large (~15GB), ensure sufficient disk space
- Use appropriate batch sizes based on available GPU memory
- Consider using `num_workers` for faster data loading
### CPU Optimization
- The system automatically detects CPU vs GPU and optimizes accordingly
- CPU inference uses float32 precision and limited threads
- GPU inference uses float16 precision for better performance
### Evaluation Speed
- Limit `max_samples` for faster evaluation during development
- Full evaluation on the entire validation set may take significant time
- Consider running evaluations on a subset for quick feedback
## Troubleshooting
### Common Issues
1. **Dataset not found**: Ensure the dataset is extracted to the correct path
2. **Permission errors**: Check file permissions for the dataset directory
3. **Memory errors**: Reduce batch size or number of workers
4. **Import errors**: Install missing dependencies (scikit-learn, matplotlib, seaborn)
### Debug Mode
Enable debug logging to troubleshoot issues:
```python
import logging
logging.basicConfig(level=logging.DEBUG)
```
## Future Enhancements
### Planned Features
- **Training Pipeline**: Fine-tune models on DeepFashion2 data
- **Advanced Metrics**: Add more sophisticated evaluation metrics
- **Visualization Tools**: Enhanced plotting and analysis tools
- **Benchmark Comparisons**: Compare against other fashion datasets
### Contributing
To contribute to the DeepFashion2 integration:
1. Fork the repository
2. Create a feature branch
3. Add tests for new functionality
4. Submit a pull request
## References
- [DeepFashion2 Paper](https://arxiv.org/abs/1901.07973)
- [DeepFashion2 Repository](https://github.com/switchablenorms/DeepFashion2)
- [yainage90 Models](https://huggingface.co/yainage90)
## License
This integration follows the same license as the main Vestiq project. The DeepFashion2 dataset has its own licensing terms that must be respected.
|