File size: 7,451 Bytes
f8b306b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# DeepFashion2 Dataset Integration

This document describes the integration of the DeepFashion2 dataset with the Vestiq fashion analysis system.

## Overview

DeepFashion2 is a comprehensive fashion dataset that provides:
- 491K diverse images of 13 popular clothing categories
- Bounding box annotations for fashion items
- Dense pose estimation
- Commercial-consumer clothes correspondence
- Scale, occlusion, zoom-in, and viewpoint labels

## Integration Features

### 1. Dataset Loading and Processing
- **DeepFashion2Dataset**: PyTorch dataset class for loading images and annotations
- **Category Mapping**: Maps DeepFashion2 categories to yainage90 model categories
- **Data Transforms**: Standard preprocessing for fashion images
- **Batch Processing**: Efficient DataLoader implementation

### 2. Evaluation Framework
- **Detection Accuracy**: Evaluate fashion object detection performance
- **Feature Quality**: Assess feature extraction capabilities
- **Classification Metrics**: Precision, recall, F1-score, confusion matrix
- **Visualization**: Confusion matrix plots and performance charts

### 3. API Endpoints
- `/deepfashion2/status` - Check integration status and dataset availability
- `/deepfashion2/statistics` - Get dataset statistics and category distribution
- `/deepfashion2/evaluate` - Run evaluation using DeepFashion2 as benchmark
- `/deepfashion2/setup-instructions` - Get setup instructions for the dataset

## Category Mapping

DeepFashion2 uses 13 detailed categories that are mapped to yainage90's 7 categories:

| DeepFashion2 Category | yainage90 Category |
|----------------------|-------------------|
| short_sleeved_shirt  | top              |
| long_sleeved_shirt   | top              |
| short_sleeved_outwear| outer            |
| long_sleeved_outwear | outer            |
| vest                 | top              |
| sling                | top              |
| shorts               | bottom           |
| trousers             | bottom           |
| skirt                | bottom           |
| short_sleeved_dress  | dress            |
| long_sleeved_dress   | dress            |
| vest_dress           | dress            |
| sling_dress          | dress            |

## Setup Instructions

### 1. Download the Dataset

The DeepFashion2 dataset requires manual download due to licensing requirements:

1. Visit the official repository: https://github.com/switchablenorms/DeepFashion2
2. Follow the dataset download instructions
3. Register and download the dataset files

### 2. Dataset Structure

Extract the dataset to `./data/deepfashion2/` with the following structure:

```
deepfashion2/
β”œβ”€β”€ train/
β”‚   β”œβ”€β”€ image/          # Training images
β”‚   └── annos/          # Training annotations (JSON)
β”œβ”€β”€ validation/
β”‚   β”œβ”€β”€ image/          # Validation images
β”‚   └── annos/          # Validation annotations (JSON)
└── test/
    β”œβ”€β”€ image/          # Test images
    └── annos/          # Test annotations (JSON)
```

### 3. Install Dependencies

Install additional dependencies for evaluation:

```bash
pip install scikit-learn matplotlib seaborn
```

### 4. Verify Setup

Check the integration status:

```bash
curl http://localhost:7861/deepfashion2/status
```

## Usage Examples

### 1. Basic Dataset Loading

```python
from deepfashion2_utils import DeepFashion2Config, DeepFashion2Dataset

config = DeepFashion2Config()
dataset = DeepFashion2Dataset(
    root_dir=config.dataset_root,
    split='validation',
    load_annotations=True
)

# Get a sample
sample = dataset[0]
print(f"Image: {sample['image_path']}")
print(f"Categories: {dataset.get_categories_in_image(sample['annotations'])}")
```

### 2. Running Evaluation

```python
from deepfashion2_evaluation import run_full_evaluation
from fast import analyzer

# Run evaluation with 100 samples
report_path = run_full_evaluation(analyzer, max_samples=100)
print(f"Evaluation report saved to: {report_path}")
```

### 3. API Usage

```bash
# Check status
curl -X GET "http://localhost:7861/deepfashion2/status"

# Get dataset statistics
curl -X GET "http://localhost:7861/deepfashion2/statistics"

# Run evaluation
curl -X POST "http://localhost:7861/deepfashion2/evaluate?max_samples=50"

# Get setup instructions
curl -X GET "http://localhost:7861/deepfashion2/setup-instructions"
```

## Evaluation Metrics

### Detection Accuracy
- **Category-level accuracy**: How well the model detects clothing categories
- **Detection score**: IoU-like metric for category overlap
- **Confusion matrix**: Detailed breakdown of predictions vs ground truth

### Feature Quality
- **Feature dimension**: Dimensionality of extracted features
- **Intra-category similarity**: How similar features are within the same category
- **Inter-category distance**: How well features separate different categories
- **Feature separability**: Overall quality metric for feature discrimination

## Configuration Options

### DeepFashion2Config

```python
@dataclass
class DeepFashion2Config:
    dataset_root: str = "./data/deepfashion2"
    categories: List[str] = None  # Auto-populated with 13 categories
    image_size: Tuple[int, int] = (224, 224)
    batch_size: int = 32
    num_workers: int = 4
```

### Customization

You can customize the configuration for your specific needs:

```python
config = DeepFashion2Config(
    dataset_root="/path/to/your/deepfashion2",
    image_size=(256, 256),
    batch_size=16
)
```

## Performance Considerations

### Memory Usage
- The dataset is large (~15GB), ensure sufficient disk space
- Use appropriate batch sizes based on available GPU memory
- Consider using `num_workers` for faster data loading

### CPU Optimization
- The system automatically detects CPU vs GPU and optimizes accordingly
- CPU inference uses float32 precision and limited threads
- GPU inference uses float16 precision for better performance

### Evaluation Speed
- Limit `max_samples` for faster evaluation during development
- Full evaluation on the entire validation set may take significant time
- Consider running evaluations on a subset for quick feedback

## Troubleshooting

### Common Issues

1. **Dataset not found**: Ensure the dataset is extracted to the correct path
2. **Permission errors**: Check file permissions for the dataset directory
3. **Memory errors**: Reduce batch size or number of workers
4. **Import errors**: Install missing dependencies (scikit-learn, matplotlib, seaborn)

### Debug Mode

Enable debug logging to troubleshoot issues:

```python
import logging
logging.basicConfig(level=logging.DEBUG)
```

## Future Enhancements

### Planned Features
- **Training Pipeline**: Fine-tune models on DeepFashion2 data
- **Advanced Metrics**: Add more sophisticated evaluation metrics
- **Visualization Tools**: Enhanced plotting and analysis tools
- **Benchmark Comparisons**: Compare against other fashion datasets

### Contributing

To contribute to the DeepFashion2 integration:

1. Fork the repository
2. Create a feature branch
3. Add tests for new functionality
4. Submit a pull request

## References

- [DeepFashion2 Paper](https://arxiv.org/abs/1901.07973)
- [DeepFashion2 Repository](https://github.com/switchablenorms/DeepFashion2)
- [yainage90 Models](https://huggingface.co/yainage90)

## License

This integration follows the same license as the main Vestiq project. The DeepFashion2 dataset has its own licensing terms that must be respected.