Spaces:
Sleeping
Sleeping
File size: 9,246 Bytes
2805777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# JSON API Documentation
This document describes the JSON-structured API endpoints for the Vestiq Fashion Analysis System.
## Overview
The Vestiq API now provides structured JSON responses for fashion analysis, making it easy to integrate with other applications and process results programmatically.
## Base URL
```
http://localhost:7861
```
## Authentication
No authentication required for current version.
## Content Types
- **Request**: `multipart/form-data` (for image uploads)
- **Response**: `application/json`
## API Endpoints
### 1. Health Check
**GET** `/health`
Check the health status of the API and models.
**Response:**
```json
{
"status": "healthy",
"models": "loaded",
"device": "cpu"
}
```
### 2. Detailed JSON Analysis
**POST** `/analyze-json`
Analyze an uploaded image and return comprehensive structured JSON response.
**Request:**
- Method: `POST`
- Content-Type: `multipart/form-data`
- Body: Form data with `file` field containing the image
**Response:**
```json
{
"structured_analysis": {
"upper_garment": {
"type": "Floral midi dress",
"color": "Navy blue base with white and pink floral print",
"material": "Lightweight cotton or cotton blend",
"features": "Short sleeves, round neckline, fitted bodice with A-line skirt"
},
"lower_garment": {
"type": "Not applicable - dress serves as complete outfit",
"color": "N/A",
"material": "N/A",
"features": "N/A"
},
"footwear": {
"type": "White leather sneakers",
"color": "Clean white with minimal accent details",
"material": "Leather upper with rubber sole",
"features": "Lace-up closure, low-profile design"
},
"outfit_summary": {
"aesthetic": "Casual chic",
"style_notes": "Floral pattern with modern styling",
"occasion_suitability": "Versatile for multiple occasions",
"color_harmony": "Cool-toned palette with neutral accents",
"overall_assessment": "This outfit demonstrates perfect balance between feminine charm and casual comfort..."
},
"confidence_score": 0.847,
"detected_items": [
{
"category": "dress",
"confidence": 0.892,
"bbox": [45.2, 78.1, 234.7, 456.3]
},
{
"category": "shoes",
"confidence": 0.756,
"bbox": [89.4, 423.8, 187.2, 478.9]
}
]
},
"raw_analysis": "UPPER GARMENT:\nType: Floral midi dress\n...",
"processing_time": 2.347,
"model_info": {
"detection_model": "yainage90/fashion-object-detection",
"feature_model": "yainage90/fashion-image-feature-extractor",
"device": "cpu"
}
}
```
### 3. Object Detection Only
**POST** `/detect-objects`
Detect fashion objects in an image and return detection results.
**Request:**
- Method: `POST`
- Content-Type: `multipart/form-data`
- Body: Form data with `file` field containing the image
**Response:**
```json
{
"detected_items": [
{
"category": "top",
"confidence": 0.892,
"bbox": [45.2, 78.1, 234.7, 298.5]
},
{
"category": "bottom",
"confidence": 0.756,
"bbox": [52.1, 285.3, 227.8, 423.9]
},
{
"category": "shoes",
"confidence": 0.634,
"bbox": [89.4, 423.8, 187.2, 478.9]
}
]
}
```
### 4. Feature Extraction Only
**POST** `/extract-features`
Extract fashion features from an image.
**Request:**
- Method: `POST`
- Content-Type: `multipart/form-data`
- Body: Form data with `file` field containing the image
**Response:**
```json
{
"feature_vector": [0.123, -0.456, 0.789, ...],
"feature_dimension": 128,
"processing_time": 1.234,
"model_used": "yainage90/fashion-image-feature-extractor"
}
```
### 5. Legacy Text Analysis
**POST** `/analyze-image`
Legacy endpoint returning text-based analysis.
**Response:**
```json
{
"analysis": "Detailed text-based fashion analysis..."
}
```
**POST** `/analyze-structured`
Legacy endpoint returning structured text analysis.
**Response:**
```json
{
"analysis": "UPPER GARMENT:\nType: ...\n\nLOWER GARMENT:\n..."
}
```
## Data Models
### GarmentDetails
```json
{
"type": "string", // Garment type (e.g., "Floral midi dress")
"color": "string", // Color description with analysis
"material": "string", // Material type or inference
"features": "string" // Detailed features description
}
```
### OutfitSummary
```json
{
"aesthetic": "string", // Overall aesthetic style
"style_notes": "string", // Pattern and design notes
"occasion_suitability": "string", // Suitable occasions
"color_harmony": "string", // Color analysis
"overall_assessment": "string" // Comprehensive summary
}
```
### StructuredAnalysisResponse
```json
{
"upper_garment": "GarmentDetails",
"lower_garment": "GarmentDetails",
"footwear": "GarmentDetails",
"outfit_summary": "OutfitSummary",
"confidence_score": "float", // 0.0 to 1.0
"detected_items": "array" // Array of detection results
}
```
### DetectedItem
```json
{
"category": "string", // Fashion category (top, bottom, shoes, etc.)
"confidence": "float", // Detection confidence (0.0 to 1.0)
"bbox": "array" // Bounding box [x1, y1, x2, y2]
}
```
## Fashion Categories
The system recognizes these fashion categories:
- `top` - Shirts, blouses, t-shirts
- `bottom` - Pants, jeans, skirts
- `dress` - Dresses of all types
- `outer` - Jackets, blazers, coats
- `shoes` - All types of footwear
- `bag` - Bags and purses
- `hat` - Hats and headwear
## Error Responses
All endpoints return error responses in this format:
```json
{
"detail": "Error message describing what went wrong"
}
```
Common HTTP status codes:
- `400` - Bad Request (invalid input)
- `422` - Unprocessable Entity (validation error)
- `500` - Internal Server Error (processing failed)
## Usage Examples
### cURL Examples
```bash
# Health check
curl -X GET "http://localhost:7861/health"
# Analyze image with JSON response
curl -X POST "http://localhost:7861/analyze-json" \
-F "file=@your_image.jpg"
# Detect objects only
curl -X POST "http://localhost:7861/detect-objects" \
-F "file=@your_image.jpg"
# Extract features only
curl -X POST "http://localhost:7861/extract-features" \
-F "file=@your_image.jpg"
```
### Python Examples
```python
import requests
# Analyze image with structured JSON
with open('fashion_image.jpg', 'rb') as f:
response = requests.post(
'http://localhost:7861/analyze-json',
files={'file': f}
)
result = response.json()
# Access structured data
upper_garment = result['structured_analysis']['upper_garment']
confidence = result['structured_analysis']['confidence_score']
processing_time = result['processing_time']
# Object detection only
with open('fashion_image.jpg', 'rb') as f:
response = requests.post(
'http://localhost:7861/detect-objects',
files={'file': f}
)
detections = response.json()['detected_items']
for item in detections:
print(f"Found {item['category']} with {item['confidence']:.3f} confidence")
```
### JavaScript Examples
```javascript
// Analyze image with fetch API
const formData = new FormData();
formData.append('file', fileInput.files[0]);
fetch('/analyze-json', {
method: 'POST',
body: formData
})
.then(response => response.json())
.then(data => {
console.log('Analysis result:', data.structured_analysis);
console.log('Processing time:', data.processing_time);
});
// Object detection
fetch('/detect-objects', {
method: 'POST',
body: formData
})
.then(response => response.json())
.then(data => {
data.detected_items.forEach(item => {
console.log(`${item.category}: ${item.confidence}`);
});
});
```
## Performance Notes
- **Processing Time**: Typical analysis takes 1-5 seconds depending on image size and hardware
- **Image Formats**: Supports JPEG, PNG, WebP, and other common formats
- **Image Size**: Optimal size is 224x224 to 512x512 pixels
- **Batch Processing**: Currently single image per request
- **Rate Limiting**: No rate limiting implemented in current version
## Integration Tips
1. **Error Handling**: Always check HTTP status codes and handle errors gracefully
2. **Image Preprocessing**: Resize large images before upload for better performance
3. **Confidence Thresholds**: Filter detection results by confidence score (>0.5 recommended)
4. **Caching**: Consider caching results for identical images
5. **Async Processing**: Use async/await patterns for better user experience
## DeepFashion2 Integration
When the DeepFashion2 dataset is available, additional endpoints become active:
- `/deepfashion2/status` - Check dataset availability
- `/deepfashion2/statistics` - Get dataset statistics
- `/deepfashion2/evaluate` - Run model evaluation
- `/deepfashion2/train` - Start model training
See [DEEPFASHION2_INTEGRATION.md](DEEPFASHION2_INTEGRATION.md) for details.
## Support
For issues or questions:
1. Check the server logs for detailed error messages
2. Verify image format and size requirements
3. Test with the `/health` endpoint to ensure models are loaded
4. Review this documentation for correct API usage
|