Spaces:
Sleeping
Sleeping
File size: 15,481 Bytes
f8b306b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
"""
DeepFashion2 Evaluation Module
Provides evaluation capabilities using DeepFashion2 dataset as benchmark
for the Vestiq fashion analysis system.
"""
import torch
import numpy as np
from typing import Dict, List, Tuple, Optional
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
from pathlib import Path
import json
from tqdm import tqdm
from deepfashion2_utils import (
DeepFashion2Config,
DeepFashion2Dataset,
DeepFashion2CategoryMapper,
create_deepfashion2_dataloader
)
class DeepFashion2Evaluator:
"""Evaluate fashion models using DeepFashion2 dataset"""
def __init__(self, config: DeepFashion2Config, analyzer=None):
"""
Initialize evaluator
Args:
config: DeepFashion2 configuration
analyzer: HuggingFaceFashionAnalyzer instance
"""
self.config = config
self.analyzer = analyzer
self.category_mapper = DeepFashion2CategoryMapper()
self.results = {}
def evaluate_detection_accuracy(self, split: str = 'validation',
max_samples: Optional[int] = None) -> Dict:
"""
Evaluate fashion object detection accuracy on DeepFashion2
Args:
split: Dataset split to evaluate on
max_samples: Maximum number of samples to evaluate (None for all)
Returns:
Dictionary containing evaluation metrics
"""
if not self.analyzer:
raise ValueError("Analyzer not provided")
print(f"Evaluating detection accuracy on {split} split...")
# Load dataset
dataset = DeepFashion2Dataset(
root_dir=self.config.dataset_root,
split=split,
transform=None,
load_annotations=True
)
if max_samples:
dataset.image_files = dataset.image_files[:max_samples]
# Evaluation metrics
true_categories = []
predicted_categories = []
detection_scores = []
for i in tqdm(range(len(dataset)), desc="Evaluating detection"):
try:
item = dataset[i]
image_path = item['image_path']
annotations = item['annotations']
# Get ground truth categories
gt_categories = dataset.get_categories_in_image(annotations)
gt_yainage_categories = [
self.category_mapper.map_to_yainage90(cat)
for cat in gt_categories
]
gt_yainage_categories = list(set(gt_yainage_categories))
if not gt_yainage_categories:
continue
# Get model predictions
with open(image_path, 'rb') as f:
image_bytes = f.read()
detection_results = self.analyzer.detect_fashion_objects(
self.analyzer.process_image_from_bytes(image_bytes)
)
if 'detected_items' in detection_results:
pred_categories = [
item['category'] for item in detection_results['detected_items']
if item['confidence'] > 0.5
]
pred_categories = list(set(pred_categories))
# Calculate detection score (IoU-like for categories)
if pred_categories and gt_yainage_categories:
intersection = set(pred_categories) & set(gt_yainage_categories)
union = set(pred_categories) | set(gt_yainage_categories)
score = len(intersection) / len(union) if union else 0
detection_scores.append(score)
# Store for classification metrics
for gt_cat in gt_yainage_categories:
true_categories.append(gt_cat)
predicted_categories.append(
gt_cat if gt_cat in pred_categories else 'none'
)
except Exception as e:
print(f"Error processing image {i}: {e}")
continue
# Calculate metrics
metrics = self._calculate_classification_metrics(
true_categories, predicted_categories
)
metrics['detection_scores'] = detection_scores
metrics['mean_detection_score'] = np.mean(detection_scores) if detection_scores else 0
metrics['num_samples'] = len(dataset)
self.results['detection_accuracy'] = metrics
return metrics
def evaluate_feature_extraction(self, split: str = 'validation',
max_samples: Optional[int] = None) -> Dict:
"""
Evaluate feature extraction quality using DeepFashion2
Args:
split: Dataset split to evaluate on
max_samples: Maximum number of samples to evaluate
Returns:
Dictionary containing feature evaluation metrics
"""
if not self.analyzer:
raise ValueError("Analyzer not provided")
print(f"Evaluating feature extraction on {split} split...")
dataset = DeepFashion2Dataset(
root_dir=self.config.dataset_root,
split=split,
transform=None,
load_annotations=True
)
if max_samples:
dataset.image_files = dataset.image_files[:max_samples]
features_by_category = {}
feature_dimensions = []
for i in tqdm(range(len(dataset)), desc="Extracting features"):
try:
item = dataset[i]
image_path = item['image_path']
annotations = item['annotations']
# Get ground truth categories
gt_categories = dataset.get_categories_in_image(annotations)
gt_yainage_categories = [
self.category_mapper.map_to_yainage90(cat)
for cat in gt_categories
]
if not gt_yainage_categories:
continue
# Extract features
with open(image_path, 'rb') as f:
image_bytes = f.read()
feature_results = self.analyzer.extract_fashion_features(
self.analyzer.process_image_from_bytes(image_bytes)
)
if 'feature_vector' in feature_results:
features = np.array(feature_results['feature_vector'])
feature_dimensions.append(feature_results['feature_dimension'])
# Group features by category
for category in gt_yainage_categories:
if category not in features_by_category:
features_by_category[category] = []
features_by_category[category].append(features)
except Exception as e:
print(f"Error processing image {i}: {e}")
continue
# Calculate feature quality metrics
metrics = {
'feature_dimension': np.mean(feature_dimensions) if feature_dimensions else 0,
'categories_found': list(features_by_category.keys()),
'samples_per_category': {
cat: len(feats) for cat, feats in features_by_category.items()
}
}
# Calculate intra-category similarity and inter-category distance
if len(features_by_category) > 1:
intra_similarities = []
inter_distances = []
categories = list(features_by_category.keys())
for i, cat1 in enumerate(categories):
cat1_features = np.array(features_by_category[cat1])
# Intra-category similarity
if len(cat1_features) > 1:
similarities = []
for j in range(len(cat1_features)):
for k in range(j+1, len(cat1_features)):
sim = np.dot(cat1_features[j], cat1_features[k])
similarities.append(sim)
intra_similarities.extend(similarities)
# Inter-category distance
for j, cat2 in enumerate(categories[i+1:], i+1):
cat2_features = np.array(features_by_category[cat2])
for feat1 in cat1_features:
for feat2 in cat2_features:
dist = np.linalg.norm(feat1 - feat2)
inter_distances.append(dist)
metrics['mean_intra_similarity'] = np.mean(intra_similarities) if intra_similarities else 0
metrics['mean_inter_distance'] = np.mean(inter_distances) if inter_distances else 0
metrics['feature_separability'] = (
metrics['mean_inter_distance'] - metrics['mean_intra_similarity']
)
self.results['feature_extraction'] = metrics
return metrics
def _calculate_classification_metrics(self, y_true: List[str],
y_pred: List[str]) -> Dict:
"""Calculate classification metrics"""
if not y_true or not y_pred:
return {}
# Get unique labels
labels = list(set(y_true + y_pred))
# Calculate metrics
accuracy = accuracy_score(y_true, y_pred)
precision, recall, f1, support = precision_recall_fscore_support(
y_true, y_pred, labels=labels, average='weighted', zero_division=0
)
# Per-class metrics
precision_per_class, recall_per_class, f1_per_class, support_per_class = \
precision_recall_fscore_support(
y_true, y_pred, labels=labels, average=None, zero_division=0
)
per_class_metrics = {}
for i, label in enumerate(labels):
per_class_metrics[label] = {
'precision': precision_per_class[i],
'recall': recall_per_class[i],
'f1': f1_per_class[i],
'support': support_per_class[i]
}
return {
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1': f1,
'per_class_metrics': per_class_metrics,
'confusion_matrix': confusion_matrix(y_true, y_pred, labels=labels).tolist(),
'labels': labels
}
def generate_evaluation_report(self, output_dir: str = "./evaluation_results") -> str:
"""Generate comprehensive evaluation report"""
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
report_file = output_path / "deepfashion2_evaluation_report.json"
# Compile all results
full_report = {
'config': {
'dataset_root': self.config.dataset_root,
'categories': self.config.categories,
'image_size': self.config.image_size
},
'results': self.results,
'summary': self._generate_summary()
}
# Save report
with open(report_file, 'w') as f:
json.dump(full_report, f, indent=2)
print(f"Evaluation report saved to: {report_file}")
return str(report_file)
def _generate_summary(self) -> Dict:
"""Generate evaluation summary"""
summary = {}
if 'detection_accuracy' in self.results:
det_results = self.results['detection_accuracy']
summary['detection'] = {
'accuracy': det_results.get('accuracy', 0),
'f1_score': det_results.get('f1', 0),
'mean_detection_score': det_results.get('mean_detection_score', 0)
}
if 'feature_extraction' in self.results:
feat_results = self.results['feature_extraction']
summary['features'] = {
'feature_dimension': feat_results.get('feature_dimension', 0),
'categories_evaluated': len(feat_results.get('categories_found', [])),
'feature_separability': feat_results.get('feature_separability', 0)
}
return summary
def plot_confusion_matrix(self, output_dir: str = "./evaluation_results"):
"""Plot confusion matrix for detection results"""
if 'detection_accuracy' not in self.results:
print("No detection results available for plotting")
return
results = self.results['detection_accuracy']
if 'confusion_matrix' not in results:
return
cm = np.array(results['confusion_matrix'])
labels = results['labels']
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=labels, yticklabels=labels)
plt.title('Fashion Object Detection Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
plt.savefig(output_path / 'confusion_matrix.png', dpi=300, bbox_inches='tight')
plt.close()
print(f"Confusion matrix saved to: {output_path / 'confusion_matrix.png'}")
def run_full_evaluation(analyzer, config: Optional[DeepFashion2Config] = None,
max_samples: int = 100) -> str:
"""
Run full evaluation pipeline
Args:
analyzer: HuggingFaceFashionAnalyzer instance
config: DeepFashion2 configuration
max_samples: Maximum samples to evaluate
Returns:
Path to evaluation report
"""
if config is None:
config = DeepFashion2Config()
evaluator = DeepFashion2Evaluator(config, analyzer)
print("Starting DeepFashion2 evaluation...")
# Run detection evaluation
try:
evaluator.evaluate_detection_accuracy(max_samples=max_samples)
print("β Detection evaluation completed")
except Exception as e:
print(f"β Detection evaluation failed: {e}")
# Run feature extraction evaluation
try:
evaluator.evaluate_feature_extraction(max_samples=max_samples)
print("β Feature extraction evaluation completed")
except Exception as e:
print(f"β Feature extraction evaluation failed: {e}")
# Generate report
report_path = evaluator.generate_evaluation_report()
# Plot confusion matrix
try:
evaluator.plot_confusion_matrix()
print("β Confusion matrix plotted")
except Exception as e:
print(f"β Confusion matrix plotting failed: {e}")
return report_path
|