File size: 10,156 Bytes
f8b306b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""
DeepFashion2 Dataset Integration Utilities
Provides tools for loading, processing, and using the DeepFashion2 dataset
with the Vestiq fashion analysis system.
"""

import os
import json
import torch
import numpy as np
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Union
import torchvision.transforms as transforms
from dataclasses import dataclass, field
import requests
import zipfile
import shutil

@dataclass
class DeepFashion2Config:
    """Configuration for DeepFashion2 dataset"""
    dataset_root: str = "./data/deepfashion2"
    download_url: str = "https://github.com/switchablenorms/DeepFashion2/releases/download/v1.0/deepfashion2.zip"
    categories: List[str] = field(default_factory=list)
    image_size: Tuple[int, int] = (224, 224)
    batch_size: int = 32
    num_workers: int = 4

    def __post_init__(self):
        if not self.categories:
            # DeepFashion2 13 categories
            self.categories = [
                'short_sleeved_shirt', 'long_sleeved_shirt', 'short_sleeved_outwear',
                'long_sleeved_outwear', 'vest', 'sling', 'shorts', 'trousers',
                'skirt', 'short_sleeved_dress', 'long_sleeved_dress', 'vest_dress', 'sling_dress'
            ]

class DeepFashion2CategoryMapper:
    """Maps DeepFashion2 categories to yainage90 model categories"""
    
    def __init__(self):
        # Mapping from DeepFashion2 categories to yainage90 categories
        self.df2_to_yainage90 = {
            'short_sleeved_shirt': 'top',
            'long_sleeved_shirt': 'top', 
            'short_sleeved_outwear': 'outer',
            'long_sleeved_outwear': 'outer',
            'vest': 'top',
            'sling': 'top',
            'shorts': 'bottom',
            'trousers': 'bottom',
            'skirt': 'bottom',
            'short_sleeved_dress': 'dress',
            'long_sleeved_dress': 'dress',
            'vest_dress': 'dress',
            'sling_dress': 'dress'
        }
        
        # Reverse mapping
        self.yainage90_to_df2 = {}
        for df2_cat, yainage_cat in self.df2_to_yainage90.items():
            if yainage_cat not in self.yainage90_to_df2:
                self.yainage90_to_df2[yainage_cat] = []
            self.yainage90_to_df2[yainage_cat].append(df2_cat)
    
    def map_to_yainage90(self, df2_category: str) -> str:
        """Map DeepFashion2 category to yainage90 category"""
        return self.df2_to_yainage90.get(df2_category, 'unknown')
    
    def map_from_yainage90(self, yainage_category: str) -> List[str]:
        """Map yainage90 category to DeepFashion2 categories"""
        return self.yainage90_to_df2.get(yainage_category, [])

class DeepFashion2Dataset(Dataset):
    """PyTorch Dataset for DeepFashion2"""
    
    def __init__(self, 
                 root_dir: str,
                 split: str = 'train',
                 transform: Optional[transforms.Compose] = None,
                 load_annotations: bool = True):
        """
        Initialize DeepFashion2 dataset
        
        Args:
            root_dir: Root directory of DeepFashion2 dataset
            split: Dataset split ('train', 'validation', 'test')
            transform: Image transformations
            load_annotations: Whether to load bounding box annotations
        """
        self.root_dir = Path(root_dir)
        self.split = split
        self.transform = transform
        self.load_annotations = load_annotations
        self.category_mapper = DeepFashion2CategoryMapper()
        
        # Load dataset metadata
        self.images_dir = self.root_dir / split / "image"
        self.annos_dir = self.root_dir / split / "annos"
        
        # Get all image files
        self.image_files = []
        if self.images_dir.exists():
            self.image_files = list(self.images_dir.glob("*.jpg"))
        
        print(f"Found {len(self.image_files)} images in {split} split")
    
    def __len__(self):
        return len(self.image_files)
    
    def __getitem__(self, idx):
        """Get dataset item"""
        image_path = self.image_files[idx]
        image_name = image_path.stem
        
        # Load image
        image = Image.open(image_path).convert('RGB')
        
        # Load annotations if requested
        annotations = None
        if self.load_annotations:
            anno_path = self.annos_dir / f"{image_name}.json"
            if anno_path.exists():
                with open(anno_path, 'r') as f:
                    annotations = json.load(f)
        
        # Apply transforms
        if self.transform:
            image = self.transform(image)
        
        return {
            'image': image,
            'image_path': str(image_path),
            'image_name': image_name,
            'annotations': annotations
        }
    
    def get_categories_in_image(self, annotations: Dict) -> List[str]:
        """Extract categories from annotations"""
        if not annotations or 'item' not in annotations:
            return []
        
        categories = []
        for item_id, item_data in annotations['item'].items():
            if 'category_name' in item_data:
                categories.append(item_data['category_name'])
        
        return list(set(categories))

class DeepFashion2Downloader:
    """Download and setup DeepFashion2 dataset"""
    
    def __init__(self, config: DeepFashion2Config):
        self.config = config
        self.dataset_root = Path(config.dataset_root)
    
    def download_dataset(self, force_download: bool = False) -> bool:
        """
        Download DeepFashion2 dataset
        
        Args:
            force_download: Force re-download even if dataset exists
            
        Returns:
            True if successful, False otherwise
        """
        if self.dataset_root.exists() and not force_download:
            print(f"Dataset already exists at {self.dataset_root}")
            return True
        
        print("DeepFashion2 dataset download requires manual setup.")
        print("Please follow these steps:")
        print("1. Visit: https://github.com/switchablenorms/DeepFashion2")
        print("2. Follow the dataset download instructions")
        print("3. Extract the dataset to:", self.dataset_root)
        print("4. Ensure the directory structure is:")
        print("   deepfashion2/")
        print("   β”œβ”€β”€ train/")
        print("   β”‚   β”œβ”€β”€ image/")
        print("   β”‚   └── annos/")
        print("   β”œβ”€β”€ validation/")
        print("   β”‚   β”œβ”€β”€ image/")
        print("   β”‚   └── annos/")
        print("   └── test/")
        print("       β”œβ”€β”€ image/")
        print("       └── annos/")
        
        return False
    
    def verify_dataset(self) -> bool:
        """Verify dataset structure"""
        required_dirs = [
            self.dataset_root / "train" / "image",
            self.dataset_root / "train" / "annos",
            self.dataset_root / "validation" / "image", 
            self.dataset_root / "validation" / "annos"
        ]
        
        for dir_path in required_dirs:
            if not dir_path.exists():
                print(f"Missing required directory: {dir_path}")
                return False
        
        print("Dataset structure verified successfully")
        return True

def create_deepfashion2_transforms(image_size: Tuple[int, int] = (224, 224)) -> transforms.Compose:
    """Create standard transforms for DeepFashion2 images"""
    return transforms.Compose([
        transforms.Resize(image_size),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

def create_deepfashion2_dataloader(config: DeepFashion2Config, 
                                  split: str = 'train',
                                  shuffle: bool = True) -> DataLoader:
    """Create DataLoader for DeepFashion2 dataset"""
    transform = create_deepfashion2_transforms(config.image_size)
    
    dataset = DeepFashion2Dataset(
        root_dir=config.dataset_root,
        split=split,
        transform=transform,
        load_annotations=True
    )
    
    return DataLoader(
        dataset,
        batch_size=config.batch_size,
        shuffle=shuffle,
        num_workers=config.num_workers,
        pin_memory=torch.cuda.is_available()
    )

def get_deepfashion2_statistics(config: DeepFashion2Config) -> Dict:
    """Get statistics about the DeepFashion2 dataset"""
    stats = {
        'splits': {},
        'total_images': 0,
        'categories': config.categories,
        'category_counts': {cat: 0 for cat in config.categories}
    }
    
    for split in ['train', 'validation', 'test']:
        try:
            dataset = DeepFashion2Dataset(
                root_dir=config.dataset_root,
                split=split,
                transform=None,
                load_annotations=True
            )
            
            split_stats = {
                'num_images': len(dataset),
                'categories_found': set()
            }
            
            # Sample a few images to get category statistics
            sample_size = min(100, len(dataset))
            for i in range(0, len(dataset), max(1, len(dataset) // sample_size)):
                item = dataset[i]
                if item['annotations']:
                    categories = dataset.get_categories_in_image(item['annotations'])
                    split_stats['categories_found'].update(categories)
                    for cat in categories:
                        if cat in stats['category_counts']:
                            stats['category_counts'][cat] += 1
            
            split_stats['categories_found'] = list(split_stats['categories_found'])
            stats['splits'][split] = split_stats
            stats['total_images'] += split_stats['num_images']
            
        except Exception as e:
            print(f"Error processing {split} split: {e}")
            stats['splits'][split] = {'error': str(e)}
    
    return stats