""" DeepFashion2 Dataset Integration Utilities Provides tools for loading, processing, and using the DeepFashion2 dataset with the Vestiq fashion analysis system. """ import os import json import torch import numpy as np from PIL import Image from torch.utils.data import Dataset, DataLoader from pathlib import Path from typing import Dict, List, Tuple, Optional, Union import torchvision.transforms as transforms from dataclasses import dataclass, field import requests import zipfile import shutil @dataclass class DeepFashion2Config: """Configuration for DeepFashion2 dataset""" dataset_root: str = "./data/deepfashion2" download_url: str = "https://github.com/switchablenorms/DeepFashion2/releases/download/v1.0/deepfashion2.zip" categories: List[str] = field(default_factory=list) image_size: Tuple[int, int] = (224, 224) batch_size: int = 32 num_workers: int = 4 def __post_init__(self): if not self.categories: # DeepFashion2 13 categories self.categories = [ 'short_sleeved_shirt', 'long_sleeved_shirt', 'short_sleeved_outwear', 'long_sleeved_outwear', 'vest', 'sling', 'shorts', 'trousers', 'skirt', 'short_sleeved_dress', 'long_sleeved_dress', 'vest_dress', 'sling_dress' ] class DeepFashion2CategoryMapper: """Maps DeepFashion2 categories to yainage90 model categories""" def __init__(self): # Mapping from DeepFashion2 categories to yainage90 categories self.df2_to_yainage90 = { 'short_sleeved_shirt': 'top', 'long_sleeved_shirt': 'top', 'short_sleeved_outwear': 'outer', 'long_sleeved_outwear': 'outer', 'vest': 'top', 'sling': 'top', 'shorts': 'bottom', 'trousers': 'bottom', 'skirt': 'bottom', 'short_sleeved_dress': 'dress', 'long_sleeved_dress': 'dress', 'vest_dress': 'dress', 'sling_dress': 'dress' } # Reverse mapping self.yainage90_to_df2 = {} for df2_cat, yainage_cat in self.df2_to_yainage90.items(): if yainage_cat not in self.yainage90_to_df2: self.yainage90_to_df2[yainage_cat] = [] self.yainage90_to_df2[yainage_cat].append(df2_cat) def map_to_yainage90(self, df2_category: str) -> str: """Map DeepFashion2 category to yainage90 category""" return self.df2_to_yainage90.get(df2_category, 'unknown') def map_from_yainage90(self, yainage_category: str) -> List[str]: """Map yainage90 category to DeepFashion2 categories""" return self.yainage90_to_df2.get(yainage_category, []) class DeepFashion2Dataset(Dataset): """PyTorch Dataset for DeepFashion2""" def __init__(self, root_dir: str, split: str = 'train', transform: Optional[transforms.Compose] = None, load_annotations: bool = True): """ Initialize DeepFashion2 dataset Args: root_dir: Root directory of DeepFashion2 dataset split: Dataset split ('train', 'validation', 'test') transform: Image transformations load_annotations: Whether to load bounding box annotations """ self.root_dir = Path(root_dir) self.split = split self.transform = transform self.load_annotations = load_annotations self.category_mapper = DeepFashion2CategoryMapper() # Load dataset metadata self.images_dir = self.root_dir / split / "image" self.annos_dir = self.root_dir / split / "annos" # Get all image files self.image_files = [] if self.images_dir.exists(): self.image_files = list(self.images_dir.glob("*.jpg")) print(f"Found {len(self.image_files)} images in {split} split") def __len__(self): return len(self.image_files) def __getitem__(self, idx): """Get dataset item""" image_path = self.image_files[idx] image_name = image_path.stem # Load image image = Image.open(image_path).convert('RGB') # Load annotations if requested annotations = None if self.load_annotations: anno_path = self.annos_dir / f"{image_name}.json" if anno_path.exists(): with open(anno_path, 'r') as f: annotations = json.load(f) # Apply transforms if self.transform: image = self.transform(image) return { 'image': image, 'image_path': str(image_path), 'image_name': image_name, 'annotations': annotations } def get_categories_in_image(self, annotations: Dict) -> List[str]: """Extract categories from annotations""" if not annotations or 'item' not in annotations: return [] categories = [] for item_id, item_data in annotations['item'].items(): if 'category_name' in item_data: categories.append(item_data['category_name']) return list(set(categories)) class DeepFashion2Downloader: """Download and setup DeepFashion2 dataset""" def __init__(self, config: DeepFashion2Config): self.config = config self.dataset_root = Path(config.dataset_root) def download_dataset(self, force_download: bool = False) -> bool: """ Download DeepFashion2 dataset Args: force_download: Force re-download even if dataset exists Returns: True if successful, False otherwise """ if self.dataset_root.exists() and not force_download: print(f"Dataset already exists at {self.dataset_root}") return True print("DeepFashion2 dataset download requires manual setup.") print("Please follow these steps:") print("1. Visit: https://github.com/switchablenorms/DeepFashion2") print("2. Follow the dataset download instructions") print("3. Extract the dataset to:", self.dataset_root) print("4. Ensure the directory structure is:") print(" deepfashion2/") print(" ├── train/") print(" │ ├── image/") print(" │ └── annos/") print(" ├── validation/") print(" │ ├── image/") print(" │ └── annos/") print(" └── test/") print(" ├── image/") print(" └── annos/") return False def verify_dataset(self) -> bool: """Verify dataset structure""" required_dirs = [ self.dataset_root / "train" / "image", self.dataset_root / "train" / "annos", self.dataset_root / "validation" / "image", self.dataset_root / "validation" / "annos" ] for dir_path in required_dirs: if not dir_path.exists(): print(f"Missing required directory: {dir_path}") return False print("Dataset structure verified successfully") return True def create_deepfashion2_transforms(image_size: Tuple[int, int] = (224, 224)) -> transforms.Compose: """Create standard transforms for DeepFashion2 images""" return transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def create_deepfashion2_dataloader(config: DeepFashion2Config, split: str = 'train', shuffle: bool = True) -> DataLoader: """Create DataLoader for DeepFashion2 dataset""" transform = create_deepfashion2_transforms(config.image_size) dataset = DeepFashion2Dataset( root_dir=config.dataset_root, split=split, transform=transform, load_annotations=True ) return DataLoader( dataset, batch_size=config.batch_size, shuffle=shuffle, num_workers=config.num_workers, pin_memory=torch.cuda.is_available() ) def get_deepfashion2_statistics(config: DeepFashion2Config) -> Dict: """Get statistics about the DeepFashion2 dataset""" stats = { 'splits': {}, 'total_images': 0, 'categories': config.categories, 'category_counts': {cat: 0 for cat in config.categories} } for split in ['train', 'validation', 'test']: try: dataset = DeepFashion2Dataset( root_dir=config.dataset_root, split=split, transform=None, load_annotations=True ) split_stats = { 'num_images': len(dataset), 'categories_found': set() } # Sample a few images to get category statistics sample_size = min(100, len(dataset)) for i in range(0, len(dataset), max(1, len(dataset) // sample_size)): item = dataset[i] if item['annotations']: categories = dataset.get_categories_in_image(item['annotations']) split_stats['categories_found'].update(categories) for cat in categories: if cat in stats['category_counts']: stats['category_counts'][cat] += 1 split_stats['categories_found'] = list(split_stats['categories_found']) stats['splits'][split] = split_stats stats['total_images'] += split_stats['num_images'] except Exception as e: print(f"Error processing {split} split: {e}") stats['splits'][split] = {'error': str(e)} return stats