File size: 9,443 Bytes
9698c36 e25c0f9 9698c36 e25c0f9 9698c36 e25c0f9 9698c36 e25c0f9 9698c36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import uuid
import json
import time
import gradio as gr
import logging
from dotenv import load_dotenv
import google.generativeai as genai
from langgraph.graph import START, MessagesState, StateGraph
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
MessagesPlaceholder,
HumanMessagePromptTemplate,
)
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import BaseMessage
# === Logging & .env ===
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
load_dotenv()
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
raise ValueError("Missing GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
HISTORY_FILE = "chat_history.json"
# === Persistent Storage ===
def load_all_sessions():
if os.path.exists(HISTORY_FILE):
with open(HISTORY_FILE, "r", encoding="utf-8") as f:
return json.load(f)
return {}
def save_all_sessions(sessions):
with open(HISTORY_FILE, "w", encoding="utf-8") as f:
json.dump(sessions, f, indent=2)
# === Chatbot Class ===
class GeminiChatbot:
def __init__(self):
self.setup_model()
def setup_model(self):
system_template = """
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
Your answers should be informative, engaging, and accurate. If a question doesn't make any sense, or isn't factually coherent, explain why instead of answering something not correct.
If you don't know the answer to a question, please don't share false information.
"""
self.prompt = ChatPromptTemplate.from_messages([
SystemMessagePromptTemplate.from_template(system_template),
MessagesPlaceholder(variable_name="chat_history"),
HumanMessagePromptTemplate.from_template("{input}")
])
self.model = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0.7,
top_p=0.95,
google_api_key=GEMINI_API_KEY,
convert_system_message_to_human=True
)
def call_model(state: MessagesState):
chat_history = state["messages"][:-1]
user_input = state["messages"][-1].content
formatted_messages = self.prompt.format_messages(
chat_history=chat_history,
input=user_input
)
response = self.model.invoke(formatted_messages)
return {"messages": response}
workflow = StateGraph(state_schema=MessagesState)
workflow.add_node("model", call_model)
workflow.add_edge(START, "model")
self.memory = MemorySaver()
self.app = workflow.compile(checkpointer=self.memory)
def get_response(self, user_message, history, thread_id):
try:
# Convert string history into LangChain message objects
langchain_history = []
for user, bot in history:
langchain_history.append(HumanMessage(content=user))
langchain_history.append(AIMessage(content=bot))
# Add the new user message
input_message = HumanMessage(content=user_message)
full_history = langchain_history + [input_message]
full_response = ""
config = {"configurable": {"thread_id": thread_id}}
# Invoke the model with full conversation
response = self.app.invoke({"messages": full_history}, config)
complete_response = response["messages"][-1].content
for char in complete_response:
full_response += char
yield full_response
time.sleep(0.01)
except Exception as e:
logger.error(f"LangGraph Error: {e}")
yield f"⚠ Error: {type(e).__name__} — {str(e)}"
# === Gradio UI ===
chatbot = GeminiChatbot()
sessions = load_all_sessions()
def launch_interface():
with gr.Blocks(
theme=gr.themes.Base(),
css="""
body {
background-color: black;
}
.gr-block.gr-textbox textarea {
background-color: #2f2f2f;
color: white;
}
.gr-chatbot {
background-color: #2f2f2f;
color: white;
}
.gr-button, .gr-dropdown {
margin: 5px auto;
display: block;
width: 50%;
}
.gr-markdown h2 {
text-align: center;
color: white;
}
"""
) as demo:
demo.title = "LangChain Powered ChatBot"
gr.Markdown("## LangChain Powered ChatBot")
current_thread_id = gr.State()
session_names = gr.State()
history = gr.State([])
# Initialize with first session or create new
if not sessions:
new_id = str(uuid.uuid4())
sessions[new_id] = []
save_all_sessions(sessions)
current_thread_id.value = new_id
session_names.value = [f"NEW: {new_id}"]
else:
current_thread_id.value = next(iter(sessions.keys()))
session_names.value = [f"PREVIOUS: {k}" for k in sessions.keys()]
def get_dropdown_choices():
"""Get current dropdown choices including active sessions and new chat"""
choices = []
for session_id in sessions:
if sessions[session_id]: # Only show sessions with history
choices.append(f"PREVIOUS: {session_id}")
choices.append(f"NEW: {current_thread_id.value}")
return choices
with gr.Column():
new_chat_btn = gr.Button("New Chat", variant="primary")
session_selector = gr.Dropdown(
label="Chats",
choices=get_dropdown_choices(),
value=f"NEW: {current_thread_id.value}",
interactive=True
)
chatbot_ui = gr.Chatbot(label="Conversation", height=320)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question...", container=False, scale=9)
send = gr.Button("Send", variant="primary", scale=1)
clear = gr.Button("Clear Current Chat")
def start_new_chat():
new_id = str(uuid.uuid4())
sessions[new_id] = []
save_all_sessions(sessions)
# Format for dropdown
display_name = f"NEW: {new_id}"
updated_choices = [f"PREVIOUS: {k}" for k in sessions if sessions[k]] + [display_name]
return (
new_id, # thread ID state
[], # history
gr.update(choices=updated_choices, value=display_name), # update dropdown
display_name # visible value
)
def switch_chat(selected_display_id):
"""Switch between different chat sessions"""
if not selected_display_id:
return current_thread_id.value, [], ""
true_id = selected_display_id.split(": ", 1)[-1]
chat_history = sessions.get(true_id, [])
return true_id, chat_history, selected_display_id
def respond(message, history, thread_id):
"""Generate response and update chat history"""
if not message.strip():
yield history
return
# Add user message to history
history.append((message, ""))
yield history
# Stream response
full_response = ""
for chunk in chatbot.get_response(message, history[:-1], thread_id):
full_response = chunk
history[-1] = (message, full_response)
yield history
# Save updated session
sessions[thread_id] = history
save_all_sessions(sessions)
def clear_current(thread_id):
"""Clear current chat history"""
sessions[thread_id] = []
save_all_sessions(sessions)
return []
new_chat_btn.click(
start_new_chat,
outputs=[current_thread_id, chatbot_ui, session_selector, session_selector]
)
session_selector.change(
switch_chat,
inputs=session_selector,
outputs=[current_thread_id, chatbot_ui, session_selector]
)
send.click(
respond,
inputs=[msg, chatbot_ui, current_thread_id],
outputs=[chatbot_ui]
).then(
lambda: "", None, msg # Clear input after sending
)
msg.submit(
respond,
inputs=[msg, chatbot_ui, current_thread_id],
outputs=[chatbot_ui]
).then(
lambda: "", None, msg # Clear input after sending
)
clear.click(
clear_current,
inputs=[current_thread_id],
outputs=[chatbot_ui]
)
return demo
# === Run App ===
if __name__ == "__main__":
try:
demo = launch_interface()
demo.launch(share=True)
except Exception as e:
logger.critical(f"App failed: {e}")
|