File size: 7,913 Bytes
bbf1b06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import uuid
import json
import time
import gradio as gr
import logging

# Load local .env only if it exists
from dotenv import load_dotenv
load_dotenv()

import google.generativeai as genai

from langgraph.graph import START, MessagesState, StateGraph
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    MessagesPlaceholder,
    HumanMessagePromptTemplate,
)
from langchain_google_genai import ChatGoogleGenerativeAI

# === Logging ===
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

# === Load API Key ===
os.environ["GOOGLE_API_KEY"] = os.getenv["GEMINI_API_KEY"]

# GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# if not GEMINI_API_KEY:
    #raise ValueError("GEMINI_API_KEY is missing. Set it as an environment variable or Hugging Face Secret.")

genai.configure(api_key=GEMINI_API_KEY)

# === Chat Storage ===
HISTORY_FILE = "chat_history.json"

def load_all_sessions():
    if os.path.exists(HISTORY_FILE):
        with open(HISTORY_FILE, "r", encoding="utf-8") as f:
            return json.load(f)
    return {}

def save_all_sessions(sessions):
    with open(HISTORY_FILE, "w", encoding="utf-8") as f:
        json.dump(sessions, f, indent=2)

sessions = load_all_sessions()

# === Gemini LLM Chatbot ===
class GeminiChatbot:
    def __init__(self):
        self.setup_model()

    def setup_model(self):
        system_template = """
        You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
        Your answers should be informative, engaging, and accurate. If a question doesn't make any sense, or isn't factually coherent, explain why.
        If you don't know the answer to a question, please don't share false information.
        """

        self.prompt = ChatPromptTemplate.from_messages([
            SystemMessagePromptTemplate.from_template(system_template),
            MessagesPlaceholder(variable_name="chat_history"),
            HumanMessagePromptTemplate.from_template("{input}")
        ])

        self.model = ChatGoogleGenerativeAI(
            model="gemini-2.0-flash",
            temperature=0.7,
            top_p=0.95,
            google_api_key=GEMINI_API_KEY,
            convert_system_message_to_human=True
        )

        def call_model(state: MessagesState):
            chat_history = state["messages"][:-1]
            user_input = state["messages"][-1].content
            formatted_messages = self.prompt.format_messages(chat_history=chat_history, input=user_input)
            response = self.model.invoke(formatted_messages)
            return {"messages": response}

        workflow = StateGraph(state_schema=MessagesState)
        workflow.add_node("model", call_model)
        workflow.add_edge(START, "model")

        self.memory = MemorySaver()
        self.app = workflow.compile(checkpointer=self.memory)

    def get_response(self, user_message, history, thread_id):
        from langchain_core.messages import HumanMessage, AIMessage

        try:
            # Format chat history for LangChain
            langchain_history = []
            for user, bot in history:
                langchain_history.append(HumanMessage(content=user))
                langchain_history.append(AIMessage(content=bot))

            input_msg = HumanMessage(content=user_message)
            full_history = langchain_history + [input_msg]
            config = {"configurable": {"thread_id": thread_id}}

            # Get final response
            response = self.app.invoke({"messages": full_history}, config)
            full_text = response["messages"][-1].content

            full_response = ""
            for char in full_text:
                full_response += char
                yield full_response
                time.sleep(0.01)

        except Exception as e:
            logger.error(f"Response error: {e}")
            yield f"⚠ Error: {type(e).__name__}{str(e)}"


chatbot = GeminiChatbot()

# === Gradio UI ===
def launch_interface():
    with gr.Blocks(
        theme=gr.themes.Base(),
        css="""
        body { background-color: black; }
        .gr-textbox textarea { background-color: #2f2f2f; color: white; }
        .gr-chatbot { background-color: #2f2f2f; color: white; }
        .gr-button, .gr-dropdown {
            margin: 5px auto;
            display: block;
            width: 50%;
        }
        .gr-markdown h2 { text-align: center; color: white; }
        """
    ) as demo:
        demo.title = "LangChain Powered ChatBot"
        gr.Markdown("## LangChain Powered ChatBot")

        current_thread_id = gr.State()
        session_names = gr.State()
        history = gr.State([])

        if not sessions:
            new_id = str(uuid.uuid4())
            sessions[new_id] = []
            save_all_sessions(sessions)
            current_thread_id.value = new_id
            session_names.value = [f"NEW: {new_id}"]
        else:
            current_thread_id.value = next(iter(sessions))
            session_names.value = [f"PREVIOUS: {k}" for k in sessions if sessions[k]]

        def get_dropdown_choices():
            return [f"PREVIOUS: {k}" for k in sessions if sessions[k]] + [f"NEW: {current_thread_id.value}"]

        # UI
        new_chat_btn = gr.Button("New Chat", variant="primary")
        session_selector = gr.Dropdown(
            label="Chats",
            choices=get_dropdown_choices(),
            value=f"NEW: {current_thread_id.value}",
            interactive=True
        )

        chatbot_ui = gr.Chatbot(label="Conversation", height=350)

        with gr.Row():
            msg = gr.Textbox(placeholder="Ask a question...", container=False, scale=9)
            send = gr.Button("Send", variant="primary", scale=1)

        clear = gr.Button("Clear Current Chat")

        # === Event Functions ===
        def start_new_chat():
            new_id = str(uuid.uuid4())
            sessions[new_id] = []
            save_all_sessions(sessions)
            display = f"NEW: {new_id}"
            updated = [f"PREVIOUS: {k}" for k in sessions if sessions[k]] + [display]
            return new_id, [], gr.update(choices=updated, value=display), display

        def switch_chat(display_id):
            true_id = display_id.split(": ", 1)[-1]
            return true_id, sessions.get(true_id, []), display_id

        def respond(message, history, thread_id):
            if not message.strip():
                yield history
                return
            history.append((message, ""))
            yield history

            for chunk in chatbot.get_response(message, history[:-1], thread_id):
                history[-1] = (message, chunk)
                yield history

            sessions[thread_id] = history
            save_all_sessions(sessions)

        def clear_chat(thread_id):
            sessions[thread_id] = []
            save_all_sessions(sessions)
            return []

        # === Bind Events ===
        new_chat_btn.click(start_new_chat, outputs=[current_thread_id, chatbot_ui, session_selector, session_selector])
        session_selector.change(switch_chat, inputs=session_selector, outputs=[current_thread_id, chatbot_ui, session_selector])
        send.click(respond, [msg, chatbot_ui, current_thread_id], [chatbot_ui]).then(lambda: "", None, msg)
        msg.submit(respond, [msg, chatbot_ui, current_thread_id], [chatbot_ui]).then(lambda: "", None, msg)
        clear.click(clear_chat, inputs=[current_thread_id], outputs=[chatbot_ui])

    return demo

# === Run App ===
if __name__ == "__main__":
    try:
        demo = launch_interface()
        demo.launch()
    except Exception as e:
        logger.critical(f"App failed: {e}")