Spaces:
Running
Running
File size: 10,111 Bytes
a63b02b 896a0bd a63b02b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
from PIL import Image
import os
import plotly.express as px
st.set_page_config(page_title="NeuroPulse AI", page_icon="๐ง ", layout="wide")
# Load logo
logo_path = "logo.png"
if os.path.exists(logo_path):
st.image(logo_path, width=180)
# Session State defaults
if "review" not in st.session_state:
st.session_state.review = ""
if "dark_mode" not in st.session_state:
st.session_state.dark_mode = False
if "intelligence_mode" not in st.session_state:
st.session_state.intelligence_mode = True
# Apply Dark Mode Styling
if st.session_state.dark_mode:
st.markdown("""
<style>
html, body, [class*="st-"] {
background-color: #121212;
color: #f5f5f5;
}
.stTextInput > div > div > input,
.stTextArea > div > textarea,
.stSelectbox div div,
.stDownloadButton > button,
.stButton > button {
background-color: #1e1e1e;
color: white;
}
</style>
""", unsafe_allow_html=True)
# Sidebar controls
with st.sidebar:
st.header("โ๏ธ Global Settings")
st.session_state.dark_mode = st.toggle("๐ Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("๐ง Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("๐ API Token", type="password")
backend_url = st.text_input("๐ Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("๐ Sentiment Model", [
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("๐ญ Industry", [
"Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance",
"Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment"
])
product_category = st.selectbox("๐งฉ Product Category", [
"Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App",
"Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables",
"Home Appliances", "Food Apps"
])
use_aspects = st.checkbox("๐ฌ Enable Aspect Analysis")
use_smart_summary = st.checkbox("๐ง Smart Summary (Single)")
use_smart_summary_bulk = st.checkbox("๐ง Smart Summary for Bulk")
verbosity = st.radio("๐ฃ๏ธ Response Style", ["Brief", "Detailed"])
follow_up = st.text_input("๐ Follow-up Question")
voice_lang = st.selectbox("๐ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# Text-to-Speech
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
mp3.seek(0)
return mp3
tab1, tab2 = st.tabs(["๐ง Single Review", "๐ Bulk CSV"])
# --- SINGLE REVIEW ---
with tab1:
st.title("๐ง NeuroPulse AI โ Multimodal Review Analyzer")
st.markdown("<div style='font-size:16px;color:#888;'>Minimum 50โ100 words recommended.</div>", unsafe_allow_html=True)
review = st.text_area("๐ Enter Review", value=st.session_state.review, height=180)
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("๐ Analyze", use_container_width=True, disabled=not api_token)
with col2:
if st.button("๐ฒ Example", use_container_width=True):
st.session_state.review = "I love this phone! Super fast performance, great battery, and smooth UI."
st.rerun()
with col3:
if st.button("๐งน Clear", use_container_width=True):
st.session_state.review = ""
st.rerun()
if analyze and review:
if len(review.split()) < 50:
st.warning("โ ๏ธ Please enter at least 50 words.")
else:
with st.spinner("Analyzing..."):
try:
payload = {
"text": review,
"model": sentiment_model,
"industry": industry,
"aspects": use_aspects,
"follow_up": follow_up,
"product_category": product_category,
"verbosity": verbosity,
"intelligence": st.session_state.intelligence_mode
}
headers = {"x-api-key": st.session_state.get("api_token", api_token)}
params = {"smart": "1"} if use_smart_summary else {}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)
if res.status_code == 200:
data = res.json()
st.success("โ
Analysis Complete")
st.subheader("๐ Summary")
st.info(data["summary"])
st.caption(f"๐ง Summary Type: {'Smart' if use_smart_summary else 'Standard'} | {verbosity} Response")
st.markdown(f"**Context:** `{data['industry']}` | `{data['product_category']}` | `Web`")
st.subheader("๐ Audio")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("โฌ๏ธ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3")
st.metric("๐ Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"๐ข Emotion: {data['emotion']}")
if data.get("aspects"):
st.subheader("๐ Aspects")
for a in data["aspects"]:
st.write(f"๐น {a['aspect']}: {a['sentiment']} ({a['score']:.2%})")
if data.get("follow_up"):
st.subheader("๐ Follow-Up Answer")
st.warning(data["follow_up"])
if data.get("explanation"):
st.subheader("๐งฎ Explain This")
st.markdown(data["explanation"])
else:
st.error(f"โ API Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
except Exception as e:
st.error(f"๐ซ Exception occurred: {e}")
# --- BULK ---
with tab2:
st.title("๐ Bulk CSV Upload")
st.markdown("""
Upload a CSV with the following columns:<br>
<code>review</code> (required), <code>industry</code>, <code>product_category</code>, <code>device</code> (optional)
""", unsafe_allow_html=True)
with st.expander("๐ Sample CSV"):
with open("sample_reviews.csv", "rb") as f:
st.download_button("โฌ๏ธ Download sample CSV", f, file_name="sample_reviews.csv")
uploaded_file = st.file_uploader("๐ Upload your CSV", type="csv")
if uploaded_file and api_token:
try:
df = pd.read_csv(uploaded_file)
if "review" not in df.columns:
st.error("CSV must contain a `review` column.")
else:
st.success(f"โ
Loaded {len(df)} reviews")
for col in ["industry", "product_category", "device"]:
if col not in df.columns:
df[col] = ["Auto-detect"] * len(df)
df[col] = df[col].fillna("Auto-detect").astype(str)
# Replace "Auto-detect" with fallback/default
df["industry"] = df["industry"].apply(lambda x: "Generic" if x.lower() == "auto-detect" else x)
df["product_category"] = df["product_category"].apply(lambda x: "General" if x.lower() == "auto-detect" else x)
df["device"] = df["device"].apply(lambda x: "Web" if x.lower() == "auto-detect" else x)
if st.button("๐ Analyze Bulk Reviews", use_container_width=True):
with st.spinner("Processing..."):
try:
payload = {
"reviews": df["review"].tolist(),
"model": sentiment_model,
"aspects": use_aspects,
"industry": df["industry"].tolist(),
"product_category": df["product_category"].tolist(),
"device": df["device"].tolist(),
"intelligence": st.session_state.intelligence_mode,
}
headers = {"x-api-key": api_token}
params = {"smart": "1"} if use_smart_summary_bulk else {}
res = requests.post(f"{backend_url}/bulk/", json=payload, headers=headers, params=params)
if res.status_code == 200:
results = pd.DataFrame(res.json()["results"])
st.dataframe(results)
if "sentiment" in results:
fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
st.plotly_chart(fig)
st.download_button("โฌ๏ธ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv")
else:
st.error(f"โ Bulk Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
except Exception as e:
st.error(f"๐จ Processing Error: {e}")
except Exception as e:
st.error(f"โ File Read Error: {e}")
|