Spaces:
Running
Running
File size: 7,291 Bytes
9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# [STREAMLIT FRONTEND - Product Feedback AI Assistant]
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
import os
import plotly.express as px
st.set_page_config(page_title="PM Feedback Assistant", page_icon="π§ ", layout="wide")
if os.path.exists("logo.png"):
st.image("logo.png", width=180)
# Session state setup
defaults = {
"review": "",
"dark_mode": False,
"intelligence_mode": True,
"trigger_example_analysis": False,
"last_response": None,
"followup_answer": None
}
for k, v in defaults.items():
if k not in st.session_state:
st.session_state[k] = v
# Dark mode styling
if st.session_state.dark_mode:
st.markdown("""
<style>
html, body, [class*="st-"] {
background-color: #121212;
color: #f5f5f5;
}
.stTextInput > div > div > input,
.stTextArea > div > textarea,
.stSelectbox div div,
.stDownloadButton > button,
.stButton > button {
background-color: #1e1e1e;
color: white;
}
</style>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.header("βοΈ PM Config")
st.session_state.dark_mode = st.toggle("π Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("π§ Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("π API Token", value="my-secret-key", type="password")
if not api_token or api_token.strip() == "my-secret-key":
st.warning("π§ͺ Demo Mode β Not all features active.")
backend_url = st.text_input("π Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("π Sentiment Model", [
"Auto-detect",
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("π Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
product_category = st.selectbox("π§© Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
use_aspects = st.checkbox("π Detect Pain Points")
use_explain_bulk = st.checkbox("π§ Generate PM Insight (Bulk)")
verbosity = st.radio("π£οΈ Response Style", ["Brief", "Detailed"])
voice_lang = st.selectbox("π Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# TTS
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
mp3.seek(0)
return mp3
tab1, tab2 = st.tabs(["π§ Analyze Review", "π Bulk Reviews"])
# === SINGLE REVIEW ===
with tab1:
st.title("π Product Feedback AI Assistant")
st.markdown("Get insights from real user feedback to reduce churn and improve product strategy.")
review = st.text_area("π Enter Customer Feedback", value=st.session_state.review, height=180)
st.session_state.review = review
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("π Analyze")
with col2:
if st.button("π² Example"):
st.session_state.review = (
"The app crashes every time I try to checkout. It's so slow and unresponsive. "
"Customer support never replied. I'm switching to another brand."
)
st.session_state.trigger_example_analysis = True
st.rerun()
with col3:
if st.button("π§Ή Clear"):
for key in ["review", "last_response", "followup_answer"]:
st.session_state[key] = ""
st.rerun()
if (analyze or st.session_state.trigger_example_analysis) and st.session_state.review:
st.session_state.trigger_example_analysis = False
st.session_state.followup_answer = None
with st.spinner("Analyzing feedback..."):
try:
model = None if sentiment_model == "Auto-detect" else sentiment_model
payload = {
"text": st.session_state.review,
"model": model or "distilbert-base-uncased-finetuned-sst-2-english",
"industry": industry,
"product_category": product_category,
"verbosity": verbosity,
"aspects": use_aspects,
"intelligence": st.session_state.intelligence_mode
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
if res.status_code == 200:
st.session_state.last_response = res.json()
else:
st.error(f"API error: {res.status_code} - {res.json().get('detail')}")
except Exception as e:
st.error(f"π« Exception: {e}")
data = st.session_state.last_response
if data:
st.subheader("π PM Insight Summary")
st.info(data["summary"])
st.caption("π Summary Model: facebook/bart-large-cnn | " + verbosity + " response")
st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web")
st.metric("π Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"π’ Emotion: {data['emotion']}")
if "churn_risk" in data:
st.warning(f"β οΈ Estimated Churn Risk: {data['churn_risk']}")
if "pain_points" in data and data["pain_points"]:
st.error("π Pain Points: " + ", ".join(data["pain_points"]))
st.subheader("π Audio Summary")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("β¬οΈ Download Audio", audio.read(), "summary.mp3")
st.markdown("### π Ask a Follow-Up")
sample_questions = ["What made the user upset?", "Any feature complaints?", "How urgent is this?"]
selected_q = st.selectbox("π‘ Suggested Questions", ["Type your own..."] + sample_questions)
custom_q = selected_q if selected_q != "Type your own..." else st.text_input("π Follow-up Question")
if custom_q:
with st.spinner("Thinking..."):
try:
follow_payload = {
"text": st.session_state.review,
"question": custom_q,
"verbosity": verbosity
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
if res.status_code == 200:
st.session_state.followup_answer = res.json().get("answer")
else:
st.error(f"β Follow-up failed: {res.json().get('detail')}")
except Exception as e:
st.error(f"β οΈ Follow-up error: {e}")
if st.session_state.followup_answer:
st.subheader("β
Answer")
st.success(st.session_state.followup_answer)
|