File size: 7,291 Bytes
9aa56c6
 
fc94552
 
 
 
 
 
 
 
 
9aa56c6
fc94552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa56c6
fc94552
9aa56c6
fc94552
 
 
 
 
9aa56c6
fc94552
 
 
 
 
 
 
 
 
 
9aa56c6
 
fc94552
 
 
 
 
 
 
 
 
 
 
 
 
9aa56c6
fc94552
9aa56c6
fc94552
9aa56c6
 
fc94552
9aa56c6
fc94552
 
 
 
 
 
 
 
9aa56c6
 
fc94552
 
 
 
 
 
 
 
 
 
 
 
9aa56c6
fc94552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa56c6
fc94552
9aa56c6
 
fc94552
 
 
9aa56c6
 
 
 
 
 
 
fc94552
9aa56c6
fc94552
9aa56c6
 
 
 
fc94552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aa56c6
fc94552
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# [STREAMLIT FRONTEND - Product Feedback AI Assistant]

import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
import os
import plotly.express as px

st.set_page_config(page_title="PM Feedback Assistant", page_icon="🧠", layout="wide")

if os.path.exists("logo.png"):
    st.image("logo.png", width=180)

# Session state setup
defaults = {
    "review": "",
    "dark_mode": False,
    "intelligence_mode": True,
    "trigger_example_analysis": False,
    "last_response": None,
    "followup_answer": None
}
for k, v in defaults.items():
    if k not in st.session_state:
        st.session_state[k] = v

# Dark mode styling
if st.session_state.dark_mode:
    st.markdown("""
    <style>
    html, body, [class*="st-"] {
        background-color: #121212;
        color: #f5f5f5;
    }
    .stTextInput > div > div > input,
    .stTextArea > div > textarea,
    .stSelectbox div div,
    .stDownloadButton > button,
    .stButton > button {
        background-color: #1e1e1e;
        color: white;
    }
    </style>
    """, unsafe_allow_html=True)

# Sidebar
with st.sidebar:
    st.header("βš™οΈ PM Config")
    st.session_state.dark_mode = st.toggle("πŸŒ™ Dark Mode", value=st.session_state.dark_mode)
    st.session_state.intelligence_mode = st.toggle("🧠 Intelligence Mode", value=st.session_state.intelligence_mode)

    api_token = st.text_input("πŸ” API Token", value="my-secret-key", type="password")
    if not api_token or api_token.strip() == "my-secret-key":
        st.warning("πŸ§ͺ Demo Mode β€” Not all features active.")

    backend_url = st.text_input("🌐 Backend URL", value="http://localhost:8000")

    sentiment_model = st.selectbox("πŸ“Š Sentiment Model", [
        "Auto-detect", 
        "distilbert-base-uncased-finetuned-sst-2-english",
        "nlptown/bert-base-multilingual-uncased-sentiment"
    ])
    industry = st.selectbox("🏭 Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
    product_category = st.selectbox("🧩 Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
    use_aspects = st.checkbox("πŸ” Detect Pain Points")
    use_explain_bulk = st.checkbox("🧠 Generate PM Insight (Bulk)")
    verbosity = st.radio("πŸ—£οΈ Response Style", ["Brief", "Detailed"])
    voice_lang = st.selectbox("πŸ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])

# TTS
def speak(text, lang='en'):
    tts = gTTS(text, lang=lang)
    mp3 = BytesIO()
    tts.write_to_fp(mp3)
    b64 = base64.b64encode(mp3.getvalue()).decode()
    st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
    mp3.seek(0)
    return mp3

tab1, tab2 = st.tabs(["🧠 Analyze Review", "πŸ“š Bulk Reviews"])

# === SINGLE REVIEW ===
with tab1:
    st.title("πŸ“Š Product Feedback AI Assistant")
    st.markdown("Get insights from real user feedback to reduce churn and improve product strategy.")

    review = st.text_area("πŸ“ Enter Customer Feedback", value=st.session_state.review, height=180)
    st.session_state.review = review

    col1, col2, col3 = st.columns(3)
    with col1:
        analyze = st.button("πŸ” Analyze")
    with col2:
        if st.button("🎲 Example"):
            st.session_state.review = (
                "The app crashes every time I try to checkout. It's so slow and unresponsive. "
                "Customer support never replied. I'm switching to another brand."
            )
            st.session_state.trigger_example_analysis = True
            st.rerun()
    with col3:
        if st.button("🧹 Clear"):
            for key in ["review", "last_response", "followup_answer"]:
                st.session_state[key] = ""
            st.rerun()

    if (analyze or st.session_state.trigger_example_analysis) and st.session_state.review:
        st.session_state.trigger_example_analysis = False
        st.session_state.followup_answer = None
        with st.spinner("Analyzing feedback..."):
            try:
                model = None if sentiment_model == "Auto-detect" else sentiment_model
                payload = {
                    "text": st.session_state.review,
                    "model": model or "distilbert-base-uncased-finetuned-sst-2-english",
                    "industry": industry,
                    "product_category": product_category,
                    "verbosity": verbosity,
                    "aspects": use_aspects,
                    "intelligence": st.session_state.intelligence_mode
                }
                headers = {"x-api-key": api_token}
                res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
                if res.status_code == 200:
                    st.session_state.last_response = res.json()
                else:
                    st.error(f"API error: {res.status_code} - {res.json().get('detail')}")
            except Exception as e:
                st.error(f"🚫 Exception: {e}")

    data = st.session_state.last_response
    if data:
        st.subheader("πŸ“Œ PM Insight Summary")
        st.info(data["summary"])
        st.caption("πŸ”Ž Summary Model: facebook/bart-large-cnn | " + verbosity + " response")
        st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web")

        st.metric("πŸ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
        st.info(f"πŸ’’ Emotion: {data['emotion']}")

        if "churn_risk" in data:
            st.warning(f"⚠️ Estimated Churn Risk: {data['churn_risk']}")
        if "pain_points" in data and data["pain_points"]:
            st.error("πŸ” Pain Points: " + ", ".join(data["pain_points"]))

        st.subheader("πŸ”Š Audio Summary")
        audio = speak(data["summary"], lang=voice_lang)
        st.download_button("⬇️ Download Audio", audio.read(), "summary.mp3")

        st.markdown("### πŸ” Ask a Follow-Up")
        sample_questions = ["What made the user upset?", "Any feature complaints?", "How urgent is this?"]
        selected_q = st.selectbox("πŸ’‘ Suggested Questions", ["Type your own..."] + sample_questions)
        custom_q = selected_q if selected_q != "Type your own..." else st.text_input("πŸ” Follow-up Question")

        if custom_q:
            with st.spinner("Thinking..."):
                try:
                    follow_payload = {
                        "text": st.session_state.review,
                        "question": custom_q,
                        "verbosity": verbosity
                    }
                    headers = {"x-api-key": api_token}
                    res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
                    if res.status_code == 200:
                        st.session_state.followup_answer = res.json().get("answer")
                    else:
                        st.error(f"❌ Follow-up failed: {res.json().get('detail')}")
                except Exception as e:
                    st.error(f"⚠️ Follow-up error: {e}")

    if st.session_state.followup_answer:
        st.subheader("βœ… Answer")
        st.success(st.session_state.followup_answer)