File size: 10,042 Bytes
a83deda
 
4c20abe
a83deda
 
 
4c20abe
 
 
a83deda
 
 
4c20abe
b9b3bd4
4c20abe
 
 
 
7adc39b
 
0e76a85
 
4c20abe
 
a83deda
4c20abe
939ac52
4c20abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
939ac52
4c20abe
a83deda
4c20abe
0e76a85
4c20abe
 
 
939ac52
 
4c20abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
from PIL import Image
import os
import plotly.express as px

st.set_page_config(page_title="NeuroPulse AI", page_icon="๐Ÿง ", layout="wide")

# Load logo
logo_path = "logo.png"
if os.path.exists(logo_path):
    st.image(logo_path, width=160)

# Session State
if "review" not in st.session_state:
    st.session_state.review = ""
if "dark_mode" not in st.session_state:
    st.session_state.dark_mode = False
if "intelligence_mode" not in st.session_state:
    st.session_state.intelligence_mode = True

# Apply Dark Mode Styling
if st.session_state.dark_mode:
    st.markdown("""
        <style>
        html, body, [class*="st-"] {
            background-color: #1e1e1e;
            color: #f5f5f5;
        }
        .stTextInput > div > div > input, .stTextArea > div > textarea {
            background-color: #2b2b2b;
            color: white;
        }
        .stButton > button {
            background-color: #333;
            color: white;
        }
        .stDownloadButton > button {
            background-color: #444;
            color: white;
        }
        .stSelectbox, .stCheckbox, .stRadio, .stFileUploader {
            background-color: #2b2b2b;
            color: white;
        }
        </style>
    """, unsafe_allow_html=True)

# Sidebar controls
with st.sidebar:
    st.header("โš™๏ธ Global Settings")
    st.session_state.dark_mode = st.toggle("๐ŸŒ™ Dark Mode", value=st.session_state.dark_mode)
    st.session_state.intelligence_mode = st.toggle("๐Ÿง  Intelligence Mode", value=st.session_state.intelligence_mode)

    api_token = st.text_input("๐Ÿ” API Token", type="password")
    backend_url = st.text_input("๐ŸŒ Backend URL", value="http://localhost:8000")

    sentiment_model = st.selectbox("๐Ÿ“Š Sentiment Model", [
        "distilbert-base-uncased-finetuned-sst-2-english",
        "nlptown/bert-base-multilingual-uncased-sentiment"
    ])

    industry = st.selectbox("๐Ÿญ Industry", [
        "Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance", "Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment"
    ])

    product_category = st.selectbox("๐Ÿงฉ Product Category", [
        "Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App", "Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables", "Home Appliances", "Food Apps"
    ])

    device_type = st.selectbox("๐Ÿ’ป Device", [
        "Auto-detect", "Web", "Android", "iOS", "Desktop", "Smartwatch", "Kiosk"
    ])

    use_aspects = st.checkbox("๐Ÿ”ฌ Enable Aspect Analysis")
    use_smart_summary = st.checkbox("๐Ÿง  Smart Summary (Single)")
    use_smart_summary_bulk = st.checkbox("๐Ÿง  Smart Summary for Bulk")

    verbosity = st.radio("๐Ÿ—ฃ๏ธ Response Style", ["Brief", "Detailed"])
    follow_up = st.text_input("๐Ÿ” Follow-up Question")
    voice_lang = st.selectbox("๐Ÿ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])

# Text-to-Speech Helper
def speak(text, lang='en'):
    tts = gTTS(text, lang=lang)
    mp3 = BytesIO()
    tts.write_to_fp(mp3)
    b64 = base64.b64encode(mp3.getvalue()).decode()
    st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
    mp3.seek(0)
    return mp3

# Tabs
tab1, tab2 = st.tabs(["๐Ÿง  Single Review", "๐Ÿ“š Bulk CSV"])

# --- SINGLE ---
with tab1:
    st.title("๐Ÿง  NeuroPulse AI โ€“ Multimodal Review Analyzer")
    st.markdown("<div style='font-size:16px;color:#aaa;'>Minimum 50โ€“100 words recommended.</div>", unsafe_allow_html=True)

    review = st.text_area("๐Ÿ“ Enter Review", value=st.session_state.review, height=180)

    col1, col2, col3 = st.columns(3)
    with col1:
        analyze = st.button("๐Ÿ” Analyze", use_container_width=True, disabled=not api_token)
    with col2:
        if st.button("๐ŸŽฒ Example", use_container_width=True):
            st.session_state.review = "App was smooth, but the transaction failed twice on Android during checkout."
            st.rerun()
    with col3:
        if st.button("๐Ÿงน Clear", use_container_width=True):
            st.session_state.review = ""
            st.rerun()

    if analyze and review:
        if len(review.split()) < 50:
            st.warning("โš ๏ธ Please enter at least 50 words.")
        else:
            with st.spinner("Analyzing..."):
                try:
                    payload = {
                        "text": review,
                        "model": sentiment_model,
                        "industry": industry,
                        "aspects": use_aspects,
                        "follow_up": follow_up,
                        "product_category": product_category,
                        "device": device_type,
                        "verbosity": verbosity,
                        "intelligence": st.session_state.intelligence_mode
                    }
                    headers = {"x-api-key": api_token}
                    params = {"smart": "1"} if use_smart_summary else {}
                    res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)

                    if res.status_code == 200:
                        data = res.json()
                        st.success("โœ… Analysis Complete")
                        st.subheader("๐Ÿ“Œ Summary")
                        st.info(data["summary"])
                        st.caption(f"๐Ÿง  Summary Type: {'Smart' if use_smart_summary else 'Standard'}")
                        st.markdown(f"**Context:** {industry} | {product_category} | {device_type}")
                        st.subheader("๐Ÿ”Š Audio")
                        audio = speak(data["summary"], lang=voice_lang)
                        st.download_button("โฌ‡๏ธ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3")
                        st.metric("๐Ÿ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
                        st.info(f"๐Ÿ’ข Emotion: {data['emotion']}")
                        if data.get("aspects"):
                            st.subheader("๐Ÿ” Aspects")
                            for a in data["aspects"]:
                                st.write(f"๐Ÿ”น {a['aspect']}: {a['sentiment']} ({a['score']:.2%})")
                        if data.get("follow_up"):
                            st.subheader("๐Ÿง  Follow-Up Response")
                            st.warning(data["follow_up"])
                        if data.get("explanation"):
                            st.subheader("๐Ÿงฎ Explain This")
                            st.markdown(data["explanation"])
                    else:
                        st.error(f"โŒ API Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
                except Exception as e:
                    st.error(f"๐Ÿšซ Exception occurred: {e}")

# --- BULK ---
with tab2:
    st.title("๐Ÿ“š Bulk CSV Upload")
    st.markdown("""
        Upload a CSV with the following columns:<br>
        <code>review</code> (required), <code>industry</code>, <code>product_category</code>, <code>device</code> (optional)
    """, unsafe_allow_html=True)

    with st.expander("๐Ÿ“„ Sample CSV"):
        with open("sample_reviews.csv", "rb") as f:
            st.download_button("โฌ‡๏ธ Download sample CSV", f, file_name="sample_reviews.csv")

    uploaded_file = st.file_uploader("๐Ÿ“ Upload your CSV", type="csv")

    if uploaded_file and api_token:
        try:
            df = pd.read_csv(uploaded_file)
            if "review" not in df.columns:
                st.error("CSV must contain a `review` column.")
            else:
                st.success(f"โœ… Loaded {len(df)} reviews")
                for col in ["industry", "product_category", "device"]:
                    if col not in df.columns:
                        df[col] = [industry if industry != "Auto-detect" else "Generic"] * len(df)
                    df[col] = df[col].fillna("").astype(str)

                if st.button("๐Ÿ“Š Analyze Bulk Reviews", use_container_width=True):
                    with st.spinner("Processing..."):
                        try:
                            payload = {
                                "reviews": df["review"].tolist(),
                                "model": sentiment_model,
                                "aspects": use_aspects,
                                "industry": df["industry"].tolist(),
                                "product_category": df["product_category"].tolist(),
                                "device": df["device"].tolist(),
                                "intelligence": st.session_state.intelligence_mode
                            }
                            headers = {"x-api-key": api_token}
                            params = {"smart": "1"} if use_smart_summary_bulk else {}
                            res = requests.post(f"{backend_url}/bulk/", json=payload, headers=headers, params=params)

                            if res.status_code == 200:
                                results = pd.DataFrame(res.json()["results"])
                                st.dataframe(results)
                                if "sentiment" in results:
                                    fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
                                    st.plotly_chart(fig)
                                st.download_button("โฌ‡๏ธ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv")
                            else:
                                st.error(f"โŒ Bulk Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
                        except Exception as e:
                            st.error(f"๐Ÿšจ Processing Error: {e}")
        except Exception as e:
            st.error(f"โŒ File Read Error: {e}")