File size: 12,570 Bytes
96c7e81
a63b02b
 
 
 
 
 
 
 
 
 
96c7e81
a63b02b
 
 
 
 
96c7e81
a63b02b
 
 
 
 
 
1e7b213
 
a63b02b
96c7e81
a63b02b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c7e81
a63b02b
 
 
 
 
1e7b213
0fc2ae2
079b663
 
0fc2ae2
a63b02b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c7e81
a63b02b
 
 
96c7e81
a63b02b
 
 
 
 
 
 
 
 
96c7e81
a63b02b
 
96c7e81
 
 
a63b02b
 
295b8c7
a63b02b
 
 
 
 
 
 
1e7b213
 
 
 
 
a63b02b
 
 
 
 
 
1e7b213
 
 
 
a63b02b
1e7b213
 
a63b02b
 
 
 
 
 
 
 
1e7b213
a63b02b
 
96c7e81
 
a63b02b
896a0bd
a63b02b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c7e81
 
 
a63b02b
1e7b213
96c7e81
1e7b213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c7e81
 
 
 
 
1e7b213
 
a63b02b
 
 
 
1e7b213
96c7e81
 
 
a63b02b
 
 
 
96c7e81
a63b02b
 
 
 
 
 
 
 
b8fc95f
 
 
 
 
 
 
 
 
 
96c7e81
b8fc95f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c7e81
 
b8fc95f
 
 
1e7b213
03c0291
b8fc95f
 
 
 
1e7b213
b8fc95f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# --- import statements remain unchanged ---
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
from PIL import Image
import os
import plotly.express as px

# --- Config ---
st.set_page_config(page_title="NeuroPulse AI", page_icon="๐Ÿง ", layout="wide")
logo_path = "logo.png"
if os.path.exists(logo_path):
    st.image(logo_path, width=180)

# --- Session State ---
if "review" not in st.session_state:
    st.session_state.review = ""
if "dark_mode" not in st.session_state:
    st.session_state.dark_mode = False
if "intelligence_mode" not in st.session_state:
    st.session_state.intelligence_mode = True
if "trigger_example_analysis" not in st.session_state:
    st.session_state.trigger_example_analysis = False

# --- Dark Mode Styling ---
if st.session_state.dark_mode:
    st.markdown("""
        <style>
        html, body, [class*="st-"] {
            background-color: #121212;
            color: #f5f5f5;
        }
        .stTextInput > div > div > input,
        .stTextArea > div > textarea,
        .stSelectbox div div,
        .stDownloadButton > button,
        .stButton > button {
            background-color: #1e1e1e;
            color: white;
        }
        </style>
    """, unsafe_allow_html=True)

# --- Sidebar ---
with st.sidebar:
    st.header("โš™๏ธ Global Settings")
    st.session_state.dark_mode = st.toggle("๐ŸŒ™ Dark Mode", value=st.session_state.dark_mode)
    st.session_state.intelligence_mode = st.toggle("๐Ÿง  Intelligence Mode", value=st.session_state.intelligence_mode)

    DEFAULT_DEMO_TOKEN = "my-secret-key"
    api_token = st.text_input("๐Ÿ” API Token", value=DEFAULT_DEMO_TOKEN, type="password")
    if not api_token or api_token.strip() == "my-secret-key":
        st.warning("๐Ÿงช Running in demo mode โ€” for full access, enter a valid API key.")

    backend_url = st.text_input("๐ŸŒ Backend URL", value="http://localhost:8000")

    sentiment_model = st.selectbox("๐Ÿ“Š Sentiment Model", [
        "distilbert-base-uncased-finetuned-sst-2-english",
        "nlptown/bert-base-multilingual-uncased-sentiment"
    ])

    industry = st.selectbox("๐Ÿญ Industry", [
        "Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance",
        "Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment"
    ])

    product_category = st.selectbox("๐Ÿงฉ Product Category", [
        "Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App",
        "Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables",
        "Home Appliances", "Food Apps"
    ])

    use_aspects = st.checkbox("๐Ÿ”ฌ Enable Aspect Analysis")
    use_smart_summary = st.checkbox("๐Ÿง  Smart Summary (Single)")
    use_smart_summary_bulk = st.checkbox("๐Ÿง  Smart Summary for Bulk")
    use_explain_bulk = st.checkbox("๐Ÿง  Generate Explanations (Bulk)")
    verbosity = st.radio("๐Ÿ—ฃ๏ธ Response Style", ["Brief", "Detailed"])
    voice_lang = st.selectbox("๐Ÿ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])

# --- TTS ---
def speak(text, lang='en'):
    tts = gTTS(text, lang=lang)
    mp3 = BytesIO()
    tts.write_to_fp(mp3)
    b64 = base64.b64encode(mp3.getvalue()).decode()
    st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
    mp3.seek(0)
    return mp3

# --- Tabs ---
tab1, tab2 = st.tabs(["๐Ÿง  Single Review", "๐Ÿ“š Bulk CSV"])

# -------------------
# SINGLE REVIEW TAB
# -------------------
with tab1:
    st.title("๐Ÿง  NeuroPulse AI โ€“ Multimodal Review Analyzer")
    st.markdown("<div style='font-size:16px;color:#888;'>Minimum 20โ€“50 words recommended.</div>", unsafe_allow_html=True)
    review = st.text_area("๐Ÿ“ Enter Review", value=st.session_state.review, height=180)

    col1, col2, col3 = st.columns(3)
    with col1:
        analyze = st.button("๐Ÿ” Analyze", use_container_width=True, disabled=not api_token)
    with col2:
        if st.button("๐ŸŽฒ Example", use_container_width=True):
            st.session_state.review = (
                "I love this phone! Super fast performance, great battery, and smooth UI. "
                "Camera is awesome too, though the price is a bit high. Overall, very happy."
            )
            st.session_state.trigger_example_analysis = True
            st.rerun()
    with col3:
        if st.button("๐Ÿงน Clear", use_container_width=True):
            st.session_state.review = ""
            st.rerun()

    if st.session_state.trigger_example_analysis and st.session_state.review:
        analyze = True
        st.session_state.trigger_example_analysis = False

    if analyze and review:
        if len(review.split()) < 20:
            st.warning("โš ๏ธ Please enter at least 20 words.")
        else:
            with st.spinner("Analyzing..."):
                try:
                    payload = {
                        "text": review,
                        "model": sentiment_model,
                        "industry": industry,
                        "aspects": use_aspects,
                        "follow_up": None,
                        "product_category": product_category,
                        "verbosity": verbosity,
                        "intelligence": st.session_state.intelligence_mode,
                        "explain": True
                    }
                    headers = {"x-api-key": st.session_state.get("api_token", api_token)}
                    params = {"smart": "1"} if use_smart_summary else {}
                    res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)

                    if res.status_code == 200:
                        data = res.json()
                        st.success("โœ… Analysis Complete")
                        st.subheader("๐Ÿ“Œ Summary")
                        st.info(data["summary"])
                        st.caption(f"๐Ÿง  Summary Type: {'Smart' if use_smart_summary else 'Standard'} | {verbosity} Response")
                        st.markdown(f"**Context:** `{data['industry']}` | `{data['product_category']}` | `Web`")

                        st.subheader("๐Ÿ”Š Audio")
                        audio = speak(data["summary"], lang=voice_lang)
                        st.download_button("โฌ‡๏ธ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3")

                        st.metric("๐Ÿ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
                        st.info(f"๐Ÿ’ข Emotion: {data['emotion']}")

                        if data.get("explanation"):
                            st.subheader("๐Ÿงฎ Explanation")
                            st.markdown(data["explanation"])

                        st.markdown("### ๐Ÿ” Got questions?")
                        st.info("๐Ÿ’ฌ Ask a follow-up question about this review.")
                        sample_questions = [
                            "What did the user like most?",
                            "Any complaints mentioned?",
                            "Is it positive overall?",
                            "What are the improvement areas?"
                        ]
                        selected_q = st.selectbox("๐Ÿ’ก Sample Questions", ["Type your own..."] + sample_questions)
                        custom_q = st.text_input("๐Ÿ” Ask a follow-up", value="" if selected_q == "Type your own..." else selected_q)

                        if custom_q:
                            with st.spinner("Thinking..."):
                                payload["follow_up"] = custom_q
                                res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)
                                if res.status_code == 200:
                                    follow = res.json().get("follow_up")
                                    if follow:
                                        st.subheader("๐Ÿ” Follow-Up Answer")
                                        if isinstance(follow, list):
                                            for q in follow:
                                                st.write("โžก๏ธ", q)
                                        else:
                                            st.warning(follow)
                                else:
                                    st.error(f"โŒ Follow-up failed: {res.json().get('detail')}")
                    else:
                        st.error(f"โŒ API Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
                except Exception as e:
                    st.error(f"๐Ÿšซ Exception occurred: {e}")

# -------------------
# BULK CSV TAB
# -------------------
with tab2:
    st.title("๐Ÿ“š Bulk CSV Upload")
    st.markdown("""
        Upload a CSV with the following columns:<br>
        <code>review</code> (required), <code>industry</code>, <code>product_category</code>, <code>device</code>, <code>follow_up</code> (optional)
    """, unsafe_allow_html=True)

    with st.expander("๐Ÿ“„ Sample CSV"):
        with open("sample_reviews.csv", "rb") as f:
            st.download_button("โฌ‡๏ธ Download sample CSV", f, file_name="sample_reviews.csv")

    uploaded_file = st.file_uploader("๐Ÿ“ Upload your CSV", type="csv")

    if uploaded_file:
        if not api_token:
            st.error("๐Ÿ” Please enter your API token in the sidebar.")
        else:
            try:
                df = pd.read_csv(uploaded_file)
                if "review" not in df.columns:
                    st.error("CSV must contain a `review` column.")
                else:
                    st.success(f"โœ… Loaded {len(df)} reviews")
                    for col in ["industry", "product_category", "device", "follow_up"]:
                        if col not in df.columns:
                            df[col] = ["Auto-detect"] * len(df)
                        df[col] = df[col].fillna("Auto-detect").astype(str)

                    df["industry"] = df["industry"].apply(lambda x: "Generic" if x.lower() == "auto-detect" else x)
                    df["product_category"] = df["product_category"].apply(lambda x: "General" if x.lower() == "auto-detect" else x)
                    df["device"] = df["device"].apply(lambda x: "Web" if x.lower() == "auto-detect" else x)

                    if st.button("๐Ÿ“Š Analyze Bulk Reviews", use_container_width=True):
                        with st.spinner("Processing..."):
                            try:
                                payload = {
                                    "reviews": df["review"].tolist(),
                                    "model": sentiment_model,
                                    "aspects": use_aspects,
                                    "industry": df["industry"].tolist(),
                                    "product_category": df["product_category"].tolist(),
                                    "device": df["device"].tolist(),
                                    "follow_up": df["follow_up"].tolist(),
                                    "explain": use_explain_bulk,
                                    "intelligence": st.session_state.intelligence_mode,
                                }
                                res = requests.post(
                                    f"{backend_url}/bulk/?token={st.session_state.get('api_token', api_token)}",
                                    json=payload
                                )
                                if res.status_code == 200:
                                    results = pd.DataFrame(res.json()["results"])
                                    st.dataframe(results)
                                    if "sentiment" in results.columns:
                                        fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
                                        st.plotly_chart(fig)
                                    st.download_button("โฌ‡๏ธ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv")
                                else:
                                    st.error(f"โŒ Bulk Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
                            except Exception as e:
                                st.error(f"๐Ÿšจ Processing Error: {e}")
            except Exception as e:
                st.error(f"โŒ File Read Error: {e}")