Spaces:
Running
Running
File size: 9,108 Bytes
5053036 7ea2e4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
from fastapi import FastAPI, Request, Header, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse, StreamingResponse
from fastapi.openapi.utils import get_openapi
from fastapi.openapi.docs import get_swagger_ui_html
from pydantic import BaseModel
from transformers import pipeline
from io import StringIO
import os, csv, logging
from openai import OpenAI
from model import summarize_review, smart_summarize
from typing import Optional
app = FastAPI(
title="π§ NeuroPulse AI",
description="Multilingual GenAI for smarter feedback β summarization, sentiment, emotion, aspects, Q&A and tags.",
version="2025.1.0",
openapi_url="/openapi.json",
docs_url=None,
redoc_url="/redoc"
)
@app.get("/docs", include_in_schema=False)
def custom_swagger_ui():
return get_swagger_ui_html(
openapi_url=app.openapi_url,
title="π§ Swagger UI - NeuroPulse AI",
swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
swagger_js_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js",
swagger_css_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css",
)
@app.get("/", response_class=HTMLResponse)
def root():
return """
<html>
<head>
<title>NeuroPulse AI</title>
<style>
body {
font-family: 'Segoe UI', sans-serif;
background: linear-gradient(135deg, #f0f4ff, #fef3c7);
margin: 0;
padding: 60px;
text-align: center;
color: #1f2937;
}
.container {
background: white;
padding: 40px;
border-radius: 16px;
max-width: 800px;
margin: auto;
box-shadow: 0 10px 30px rgba(0,0,0,0.08);
animation: fadeIn 1s ease-in-out;
}
@keyframes fadeIn {
from {opacity: 0; transform: translateY(20px);}
to {opacity: 1; transform: translateY(0);}
}
h1 {
font-size: 36px;
margin-bottom: 12px;
color: #4f46e5;
}
p {
font-size: 18px;
margin-bottom: 32px;
}
.btn {
display: inline-block;
margin: 8px;
padding: 14px 24px;
border-radius: 8px;
font-weight: 600;
color: white;
text-decoration: none;
background: linear-gradient(90deg, #4f46e5, #6366f1);
transition: all 0.3s ease;
}
.btn:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}
.btn.red {
background: linear-gradient(90deg, #dc2626, #ef4444);
}
</style>
</head>
<body>
<div class="container">
<h1>π§ Welcome to <strong>NeuroPulse AI</strong></h1>
<p>Smarter AI feedback analysis β Summarization, Sentiment, Emotion, Aspects, LLM Q&A, and Metadata Tags.</p>
<a class="btn" href="/docs">π Swagger UI</a>
<a class="btn red" href="/redoc">π ReDoc</a>
</div>
</body>
</html>
"""
# --- Models ---
class ReviewInput(BaseModel):
text: str
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
industry: str = "Generic"
aspects: bool = False
follow_up: str = None
product_category: str = None
device: str = None
class BulkReviewInput(BaseModel):
reviews: list[str]
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
industry: Optional[list[str]] = None
aspects: bool = False
product_category: Optional[list[str]] = None
device: Optional[list[str]] = None
class ChatInput(BaseModel):
question: str
context: str
class TranslationInput(BaseModel):
text: str
target_lang: str = "fr"
# --- Auth & Logging ---
VALID_API_KEY = "my-secret-key"
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
# --- Load Models Once ---
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
emotion_model = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=1)
sentiment_pipelines = {
"distilbert-base-uncased-finetuned-sst-2-english": pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english"),
"nlptown/bert-base-multilingual-uncased-sentiment": pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
}
# --- Analyze (Bulk) ---
@app.post("/bulk/")
async def bulk(data: BulkReviewInput, x_api_key: str = Header(None)):
if x_api_key != VALID_API_KEY:
raise HTTPException(status_code=401, detail="Invalid or missing API key")
sentiment_pipeline = sentiment_pipelines[data.model]
summaries = summarizer(data.reviews, max_length=80, min_length=20, truncation=True)
sentiments = sentiment_pipeline(data.reviews)
emotions = emotion_model(data.reviews)
results = []
for i, review in enumerate(data.reviews):
label = sentiments[i]["label"]
if "star" in label:
stars = int(label[0])
label = "NEGATIVE" if stars <= 2 else "NEUTRAL" if stars == 3 else "POSITIVE"
result = {
"review": review,
"summary": summaries[i]["summary_text"],
"sentiment": label,
"emotion": emotions[i][0]["label"],
"aspects": [],
"product_category": data.product_category[i] if data.product_category else None,
"device": data.device[i] if data.device else None,
"industry": data.industry[i] if data.industry else None,
}
results.append(result)
return {"results": results}
@app.post("/analyze/")
async def analyze(request: Request, data: ReviewInput, x_api_key: str = Header(None), download: str = None):
if x_api_key != VALID_API_KEY:
raise HTTPException(status_code=401, detail="Invalid or missing API key")
sentiment_pipeline = sentiment_pipelines.get(data.model)
summary = smart_summarize(data.text) if request.query_params.get("smart") == "1" else summarize_review(data.text)
sentiment = sentiment_pipeline(data.text)[0]
label = sentiment["label"]
if "star" in label:
stars = int(label[0])
label = "NEGATIVE" if stars <= 2 else "NEUTRAL" if stars == 3 else "POSITIVE"
emotion = emotion_model(data.text)[0][0]["label"]
aspects_list = []
if data.aspects:
for asp in ["battery", "price", "camera"]:
if asp in data.text.lower():
asp_result = sentiment_pipeline(asp + " " + data.text)[0]
aspects_list.append({
"aspect": asp,
"sentiment": asp_result["label"],
"score": asp_result["score"]
})
follow_up_response = chat_llm(data.follow_up, data.text) if data.follow_up else None
return {
"summary": summary,
"sentiment": {"label": label, "score": sentiment["score"]},
"emotion": emotion,
"aspects": aspects_list,
"follow_up": follow_up_response,
"product_category": data.product_category,
"device": data.device,
"industry": data.industry
}
# --- Translate ---
@app.post("/translate/")
async def translate(data: TranslationInput):
translator = pipeline("translation", model=f"Helsinki-NLP/opus-mt-en-{data.target_lang}")
return {"translated_text": translator(data.text)[0]["translation_text"]}
# --- LLM Agent Chat ---
@app.post("/chat/")
async def chat(input: ChatInput, x_api_key: str = Header(None)):
if x_api_key != VALID_API_KEY:
raise HTTPException(status_code=401, detail="Invalid or missing API key")
return {"response": chat_llm(input.question, input.context)}
def chat_llm(question, context):
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
res = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful AI review analyst."},
{"role": "user", "content": f"Context: {context}\nQuestion: {question}"}
]
)
return res.choices[0].message.content.strip()
# --- Custom OpenAPI ---
def custom_openapi():
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title=app.title,
version=app.version,
description="""
<b><span style='color:#4f46e5'>NeuroPulse AI</span></b> Β· Smart GenAI Feedback Engine<br>
Summarize reviews, detect sentiment/emotion, extract aspects, tag metadata, and ask GPT follow-ups.
""",
routes=app.routes
)
openapi_schema["openapi"] = "3.0.0"
app.openapi_schema = openapi_schema
return app.openapi_schema
app.openapi = custom_openapi |