File size: 3,854 Bytes
b5ad127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ea2e4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from typing import List, Optional
from pydantic import BaseModel
from transformers import pipeline
import nltk.data

# βœ… Extra: Smart Summarization Imports
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from nltk.tokenize import sent_tokenize
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import os
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
# πŸ“„ Load HuggingFace Pipelines
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
sentiment_analyzer = pipeline("sentiment-analysis")

# 🧠 Basic Summarization (Abstractive)
def summarize_review(text):
    return summarizer(text, max_length=60, min_length=10, do_sample=False, no_repeat_ngram_size=3)[0]["summary_text"]

# 🧠 Smart Summarization (Clustered Key Sentences)
def smart_summarize(text, n_clusters=1):
    """Improved summarization using clustering on sentence embeddings"""
    tokenizer = nltk.tokenize.PunktSentenceTokenizer()  # βœ… Use default trained Punkt tokenizer
    sentences = tokenizer.tokenize(text)

    if len(sentences) <= 1:
        return text

    vectorizer = TfidfVectorizer(stop_words="english")
    tfidf_matrix = vectorizer.fit_transform(sentences)

    if len(sentences) <= n_clusters:
        return " ".join(sentences)

    kmeans = KMeans(n_clusters=n_clusters, random_state=42)
    kmeans.fit(tfidf_matrix)

    avg = []
    for i in range(n_clusters):
        idx = np.where(kmeans.labels_ == i)[0]
        if len(idx) == 0:
            continue
        avg_vector = tfidf_matrix[idx].mean(axis=0).A1.reshape(1, -1)  # Convert np.matrix to ndarray
        sim = cosine_similarity(avg_vector, tfidf_matrix[idx])
        most_representative_idx = idx[np.argmax(sim)]
        avg.append(sentences[most_representative_idx])

    return " ".join(sorted(avg, key=sentences.index))

# πŸ“Š Sentiment Detection
def analyze_sentiment(text):
    result = sentiment_analyzer(text)[0]
    label = result["label"]
    score = result["score"]

    if "star" in label:
        stars = int(label[0])
        if stars <= 2:
            label = "NEGATIVE"
        elif stars == 3:
            label = "NEUTRAL"
        else:
            label = "POSITIVE"

    return {
        "label": label,
        "score": score
    }

# πŸ”₯ Emotion Detection (heuristic-based)
def detect_emotion(text):
    text_lower = text.lower()
    if "angry" in text_lower or "hate" in text_lower:
        return "anger"
    elif "happy" in text_lower or "love" in text_lower:
        return "joy"
    elif "sad" in text_lower or "disappointed" in text_lower:
        return "sadness"
    elif "confused" in text_lower or "unclear" in text_lower:
        return "confusion"
    else:
        return "neutral"

# 🧩 Aspect-Based Sentiment (mock)
def extract_aspect_sentiment(text, aspects: list):
    results = {}
    text_lower = text.lower()
    for asp in aspects:
        label = "positive" if asp in text_lower and "not" not in text_lower else "neutral"
        results[asp] = {
            "label": label,
            "confidence": 0.85
        }
    return results

# βœ… Pydantic Schemas for FastAPI
class ReviewInput(BaseModel):
    text: str
    model: str = "distilbert-base-uncased-finetuned-sst-2-english"
    industry: str = "Generic"
    aspects: bool = False
    follow_up: Optional[str] = None
    product_category: Optional[str] = None
    device: Optional[str] = None

class BulkReviewInput(BaseModel):
    reviews: List[str]
    model: str = "distilbert-base-uncased-finetuned-sst-2-english"
    industry: str = "Generic"
    aspects: bool = False
    product_category: Optional[str] = None
    device: Optional[str] = None

class TranslationInput(BaseModel):
    text: str
    target_lang: str = "fr"

class ChatInput(BaseModel):
    question: str
    context: str