Spaces:
Running
Running
File size: 8,929 Bytes
219f76d a1eca15 219f76d 6c76f79 a44a75e 219f76d a44a75e 219f76d f1964d8 219f76d a44a75e f1964d8 a44a75e e2f5610 f1964d8 a44a75e f1964d8 ff7c0ce f1964d8 a44a75e f1964d8 a44a75e f1964d8 a44a75e f1964d8 a44a75e f1964d8 a44a75e 219f76d a44a75e 219f76d a44a75e 219f76d a44a75e 219f76d 8d2ee16 219f76d f1964d8 a44a75e 219f76d f1964d8 ff7c0ce f1964d8 e2f5610 219f76d e2f5610 219f76d f1964d8 219f76d f1964d8 a44a75e 219f76d f1964d8 a44a75e 219f76d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from fastapi import FastAPI, Request, Header, HTTPException, Query
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.openapi.docs import get_swagger_ui_html
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from datetime import datetime
import uuid
from transformers import pipeline
import logging, traceback
from typing import Optional, List, Union
from model import (
summarize_review, smart_summarize, detect_industry,
detect_product_category, detect_emotion, answer_followup, answer_only,
assess_churn_risk, extract_pain_points # β
Added extract_pain_points
)
app = FastAPI(
title="π§ NeuroPulse AI",
description="Multilingual GenAI for smarter feedback β summarization, sentiment, emotion, aspects, Q&A and tags.",
version="2025.1.0",
openapi_url="/openapi.json",
docs_url=None,
redoc_url="/redoc"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
logging.basicConfig(level=logging.INFO)
VALID_API_KEY = "my-secret-key"
log_store = [] # β
Shared in-memory churn log
@app.get("/", response_class=HTMLResponse)
def root():
return "<h1>NeuroPulse AI Backend is Running</h1>"
@app.get("/docs", include_in_schema=False)
def custom_swagger_ui():
return get_swagger_ui_html(
openapi_url=app.openapi_url,
title="π§ Swagger UI - NeuroPulse AI",
swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
swagger_js_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js",
swagger_css_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css",
)
@app.exception_handler(Exception)
async def exception_handler(request: Request, exc: Exception):
logging.error(f"Unhandled Exception: {traceback.format_exc()}")
return JSONResponse(status_code=500, content={"detail": "Internal Server Error. Please contact support."})
# ==== SCHEMAS ====
class ReviewInput(BaseModel):
text: str
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
industry: Optional[str] = None
aspects: bool = False
follow_up: Optional[Union[str, List[str]]] = None
product_category: Optional[str] = None
device: Optional[str] = None
intelligence: Optional[bool] = False
verbosity: Optional[str] = "detailed"
class BulkReviewInput(BaseModel):
reviews: List[str]
model: str = "distilbert-base-uncased-finetuned-sst-2-english"
industry: Optional[List[str]] = None
aspects: bool = False
product_category: Optional[List[str]] = None
device: Optional[List[str]] = None
follow_up: Optional[List[Union[str, List[str]]]] = None
intelligence: Optional[bool] = False
class FollowUpRequest(BaseModel):
text: str
question: str
verbosity: Optional[str] = "brief"
# ==== HELPERS ====
def auto_fill(value: Optional[str], fallback: str) -> str:
if not value or value.lower() == "auto-detect":
return fallback
return value
# ==== ENDPOINTS ====
@app.post("/analyze/")
async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
if x_api_key and x_api_key != VALID_API_KEY:
raise HTTPException(status_code=401, detail="β Invalid API key")
if len(data.text.split()) < 20:
raise HTTPException(status_code=400, detail="β οΈ Review too short for analysis (min. 20 words).")
global log_store
try:
# === Generate Summary ===
summary = (
summarize_review(data.text, max_len=40, min_len=8)
if data.verbosity.lower() == "brief"
else smart_summarize(data.text, n_clusters=2 if data.intelligence else 1)
)
# === Sentiment + Emotion ===
sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
sentiment = sentiment_pipeline(data.text)[0]
emotion = detect_emotion(data.text)
churn_risk = assess_churn_risk(sentiment["label"], emotion)
# === Auto-detect metadata ===
industry = detect_industry(data.text) if not data.industry or "auto" in data.industry.lower() else data.industry
product_category = detect_product_category(data.text) if not data.product_category or "auto" in data.product_category.lower() else data.product_category
# === Optional: Pain Points ===
pain_points = extract_pain_points(data.text) if data.aspects else []
# === Log entry ===
log_store.append({
"timestamp": datetime.now(),
"product": product_category,
"churn_risk": churn_risk,
"user_id": str(uuid.uuid4())
})
if len(log_store) > 1000:
log_store = log_store[-1000:]
# === Final API Response ===
response = {
"summary": summary,
"sentiment": sentiment,
"emotion": emotion,
"product_category": product_category,
"device": "Web",
"industry": industry,
"churn_risk": churn_risk,
"pain_points": pain_points
}
if data.follow_up:
response["follow_up"] = answer_followup(data.text, data.follow_up, verbosity=data.verbosity)
return response
except Exception as e:
logging.error(f"π₯ Unexpected analysis failure: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail="Internal Server Error during analysis.")
@app.post("/followup/")
async def followup(request: FollowUpRequest, x_api_key: str = Header(None)):
if x_api_key and x_api_key != VALID_API_KEY:
raise HTTPException(status_code=401, detail="Invalid API key")
try:
if not request.question or len(request.text.split()) < 10:
raise HTTPException(status_code=400, detail="Question or text is too short.")
return {"answer": answer_only(request.text, request.question)}
except Exception as e:
logging.error(f"β Follow-up failed: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail="Follow-up generation failed.")
@app.get("/log/")
async def get_churn_log(x_api_key: str = Header(None)):
if x_api_key and x_api_key != VALID_API_KEY:
raise HTTPException(status_code=401, detail="Unauthorized")
return {"log": log_store}
@app.post("/bulk/")
async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
if token != VALID_API_KEY:
raise HTTPException(status_code=401, detail="β Unauthorized: Invalid API token")
global log_store
try:
results = []
sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
for i, review_text in enumerate(data.reviews):
if len(review_text.split()) < 20:
results.append({
"review": review_text,
"error": "Too short to analyze"
})
continue
summary = smart_summarize(review_text, n_clusters=2 if data.intelligence else 1)
sentiment = sentiment_pipeline(review_text)[0]
emotion = detect_emotion(review_text)
churn = assess_churn_risk(sentiment["label"], emotion)
pain = extract_pain_points(review_text) if data.aspects else []
ind = auto_fill(data.industry[i] if data.industry else None, detect_industry(review_text))
prod = auto_fill(data.product_category[i] if data.product_category else None, detect_product_category(review_text))
dev = auto_fill(data.device[i] if data.device else None, "Web")
result = {
"review": review_text,
"summary": summary,
"sentiment": sentiment["label"],
"score": sentiment["score"],
"emotion": emotion,
"industry": ind,
"product_category": prod,
"device": dev,
"churn_risk": churn,
"pain_points": pain
}
# β
Optional follow-up
if data.follow_up and i < len(data.follow_up):
follow_q = data.follow_up[i]
result["follow_up"] = answer_followup(review_text, follow_q)
# β
Log churn entry
log_store.append({
"timestamp": datetime.now(),
"product": prod,
"churn_risk": churn,
"user_id": str(uuid.uuid4())
})
results.append(result)
# β
Cap log size
if len(log_store) > 1000:
log_store = log_store[-1000:]
return {"results": results}
except Exception as e:
logging.error(f"π₯ Bulk processing failed: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail="Failed to analyze bulk reviews")
|