File size: 10,706 Bytes
a63b02b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fc2ae2
 
079b663
 
 
0fc2ae2
079b663
a63b02b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295b8c7
a63b02b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896a0bd
a63b02b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8fc95f
a63b02b
 
 
 
 
 
 
 
 
 
 
 
 
b8fc95f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03c0291
b8fc95f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
from PIL import Image
import os
import plotly.express as px

st.set_page_config(page_title="NeuroPulse AI", page_icon="๐Ÿง ", layout="wide")

# Load logo
logo_path = "logo.png"
if os.path.exists(logo_path):
    st.image(logo_path, width=180)

# Session State defaults
if "review" not in st.session_state:
    st.session_state.review = ""
if "dark_mode" not in st.session_state:
    st.session_state.dark_mode = False
if "intelligence_mode" not in st.session_state:
    st.session_state.intelligence_mode = True

# Apply Dark Mode Styling
if st.session_state.dark_mode:
    st.markdown("""
        <style>
        html, body, [class*="st-"] {
            background-color: #121212;
            color: #f5f5f5;
        }
        .stTextInput > div > div > input,
        .stTextArea > div > textarea,
        .stSelectbox div div,
        .stDownloadButton > button,
        .stButton > button {
            background-color: #1e1e1e;
            color: white;
        }
        </style>
    """, unsafe_allow_html=True)

# Sidebar controls
with st.sidebar:
    st.header("โš™๏ธ Global Settings")
    st.session_state.dark_mode = st.toggle("๐ŸŒ™ Dark Mode", value=st.session_state.dark_mode)
    st.session_state.intelligence_mode = st.toggle("๐Ÿง  Intelligence Mode", value=st.session_state.intelligence_mode)

    DEFAULT_DEMO_TOKEN = "my-secret-key"  # ๐Ÿ’ก replace with secure demo token
    api_token = st.text_input("๐Ÿ” API Token", value=DEFAULT_DEMO_TOKEN, type="password")
     # ๐ŸŸก Insert this warning right after the token field
    if not api_token or api_token.strip() == "my-secret-key":
        st.warning("๐Ÿงช Running in demo mode โ€” for full access, enter a valid API key.")

    
    backend_url = st.text_input("๐ŸŒ Backend URL", value="http://localhost:8000")

    sentiment_model = st.selectbox("๐Ÿ“Š Sentiment Model", [
        "distilbert-base-uncased-finetuned-sst-2-english",
        "nlptown/bert-base-multilingual-uncased-sentiment"
    ])

    industry = st.selectbox("๐Ÿญ Industry", [
        "Auto-detect", "Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance",
        "Gaming", "Food Delivery", "Real Estate", "Fitness", "Entertainment"
    ])

    product_category = st.selectbox("๐Ÿงฉ Product Category", [
        "Auto-detect", "General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App",
        "Travel Service", "Educational Tool", "Insurance Portal", "Streaming App", "Wearables",
        "Home Appliances", "Food Apps"
    ])

    use_aspects = st.checkbox("๐Ÿ”ฌ Enable Aspect Analysis")
    use_smart_summary = st.checkbox("๐Ÿง  Smart Summary (Single)")
    use_smart_summary_bulk = st.checkbox("๐Ÿง  Smart Summary for Bulk")

    verbosity = st.radio("๐Ÿ—ฃ๏ธ Response Style", ["Brief", "Detailed"])
    follow_up = st.text_input("๐Ÿ” Follow-up Question")
    voice_lang = st.selectbox("๐Ÿ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])

# Text-to-Speech
def speak(text, lang='en'):
    tts = gTTS(text, lang=lang)
    mp3 = BytesIO()
    tts.write_to_fp(mp3)
    b64 = base64.b64encode(mp3.getvalue()).decode()
    st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
    mp3.seek(0)
    return mp3

tab1, tab2 = st.tabs(["๐Ÿง  Single Review", "๐Ÿ“š Bulk CSV"])

# --- SINGLE REVIEW ---
with tab1:
    st.title("๐Ÿง  NeuroPulse AI โ€“ Multimodal Review Analyzer")
    st.markdown("<div style='font-size:16px;color:#888;'>Minimum 20โ€“50 words recommended.</div>", unsafe_allow_html=True)

    review = st.text_area("๐Ÿ“ Enter Review", value=st.session_state.review, height=180)

    col1, col2, col3 = st.columns(3)
    with col1:
        analyze = st.button("๐Ÿ” Analyze", use_container_width=True, disabled=not api_token)
    with col2:
        if st.button("๐ŸŽฒ Example", use_container_width=True):
            st.session_state.review = "I love this phone! Super fast performance, great battery, and smooth UI."
            st.rerun()
    with col3:
        if st.button("๐Ÿงน Clear", use_container_width=True):
            st.session_state.review = ""
            st.rerun()

    if analyze and review:
        if len(review.split()) < 50:
            st.warning("โš ๏ธ Please enter at least 50 words.")
        else:
            with st.spinner("Analyzing..."):
                try:
                    payload = {
                        "text": review,
                        "model": sentiment_model,
                        "industry": industry,
                        "aspects": use_aspects,
                        "follow_up": follow_up,
                        "product_category": product_category,
                        "verbosity": verbosity,
                        "intelligence": st.session_state.intelligence_mode
                    }
                    headers = {"x-api-key": st.session_state.get("api_token", api_token)}
                    params = {"smart": "1"} if use_smart_summary else {}
                    res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params)

                    if res.status_code == 200:
                        data = res.json()
                        st.success("โœ… Analysis Complete")
                        st.subheader("๐Ÿ“Œ Summary")
                        st.info(data["summary"])
                        st.caption(f"๐Ÿง  Summary Type: {'Smart' if use_smart_summary else 'Standard'} | {verbosity} Response")
                        st.markdown(f"**Context:** `{data['industry']}` | `{data['product_category']}` | `Web`")

                        st.subheader("๐Ÿ”Š Audio")
                        audio = speak(data["summary"], lang=voice_lang)
                        st.download_button("โฌ‡๏ธ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3")

                        st.metric("๐Ÿ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
                        st.info(f"๐Ÿ’ข Emotion: {data['emotion']}")

                        if data.get("aspects"):
                            st.subheader("๐Ÿ” Aspects")
                            for a in data["aspects"]:
                                st.write(f"๐Ÿ”น {a['aspect']}: {a['sentiment']} ({a['score']:.2%})")

                        if data.get("follow_up"):
                            st.subheader("๐Ÿ” Follow-Up Answer")
                            st.warning(data["follow_up"])

                        if data.get("explanation"):
                            st.subheader("๐Ÿงฎ Explain This")
                            st.markdown(data["explanation"])
                    else:
                        st.error(f"โŒ API Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")

                except Exception as e:
                    st.error(f"๐Ÿšซ Exception occurred: {e}")
  
# --- BULK CSV ---
with tab2:
    st.title("๐Ÿ“š Bulk CSV Upload")
    st.markdown("""
        Upload a CSV with the following columns:<br>
        <code>review</code> (required), <code>industry</code>, <code>product_category</code>, <code>device</code> (optional)
    """, unsafe_allow_html=True)

    with st.expander("๐Ÿ“„ Sample CSV"):
        with open("sample_reviews.csv", "rb") as f:
            st.download_button("โฌ‡๏ธ Download sample CSV", f, file_name="sample_reviews.csv")

    uploaded_file = st.file_uploader("๐Ÿ“ Upload your CSV", type="csv")

    if uploaded_file:
        if not api_token:
            st.error("๐Ÿ” Please enter your API token in the sidebar.")
        else:
            try:
                df = pd.read_csv(uploaded_file)
                if "review" not in df.columns:
                    st.error("CSV must contain a `review` column.")
                else:
                    st.success(f"โœ… Loaded {len(df)} reviews")
                    for col in ["industry", "product_category", "device"]:
                        if col not in df.columns:
                            df[col] = ["Auto-detect"] * len(df)
                        df[col] = df[col].fillna("Auto-detect").astype(str)

                    # Replace "Auto-detect" with fallback
                    df["industry"] = df["industry"].apply(lambda x: "Generic" if x.lower() == "auto-detect" else x)
                    df["product_category"] = df["product_category"].apply(lambda x: "General" if x.lower() == "auto-detect" else x)
                    df["device"] = df["device"].apply(lambda x: "Web" if x.lower() == "auto-detect" else x)

                    if st.button("๐Ÿ“Š Analyze Bulk Reviews", use_container_width=True):
                        with st.spinner("Processing..."):
                            try:
                                payload = {
                                    "reviews": df["review"].tolist(),
                                    "model": sentiment_model,
                                    "aspects": use_aspects,
                                    "industry": df["industry"].tolist(),
                                    "product_category": df["product_category"].tolist(),
                                    "device": df["device"].tolist(),
                                    "intelligence": st.session_state.intelligence_mode,
                                }

                                # โœ… Updated: Pass token as query param (NOT in headers)
                                res = requests.post(
                                    f"{backend_url}/bulk/?token={api_token}",
                                    json=payload
                                )

                                if res.status_code == 200:
                                    results = pd.DataFrame(res.json()["results"])
                                    st.dataframe(results)

                                    if "sentiment" in results:
                                        fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
                                        st.plotly_chart(fig)

                                    st.download_button("โฌ‡๏ธ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv")
                                else:
                                    st.error(f"โŒ Bulk Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
                            except Exception as e:
                                st.error(f"๐Ÿšจ Processing Error: {e}")
            except Exception as e:
                st.error(f"โŒ File Read Error: {e}")