File size: 6,576 Bytes
e280c8a
 
5053036
 
e280c8a
5053036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e280c8a
 
 
 
 
 
 
 
5053036
 
 
 
 
 
 
 
 
 
 
 
57d0c46
5053036
 
 
 
7b67b3d
5053036
7b67b3d
 
 
57d0c46
 
 
5053036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b67b3d
 
 
 
 
5053036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b67b3d
 
 
5053036
 
 
 
 
 
57d0c46
5053036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d0c46
 
 
 
 
5053036
 
 
 
 
 
 
57d0c46
7b67b3d
 
 
5053036
e280c8a
5053036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e280c8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from fastapi import FastAPI, Request, Header, HTTPException, UploadFile, File
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.openapi.utils import get_openapi
from fastapi.openapi.docs import get_swagger_ui_html
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import pipeline
from io import StringIO
import os, csv, logging
from model import summarize_review, smart_summarize
from typing import Optional

app = FastAPI(
    title="🧠 NeuroPulse AI",
    description="Multilingual GenAI for smarter feedback — summarization, sentiment, emotion, aspects, Q&A and tags.",
    version="2025.1.0",
    openapi_url="/openapi.json",
    docs_url=None,
    redoc_url="/redoc"
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/docs", include_in_schema=False)
def custom_swagger_ui():
    return get_swagger_ui_html(
        openapi_url=app.openapi_url,
        title="🧠 Swagger UI - NeuroPulse AI",
        swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
        swagger_js_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js",
        swagger_css_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css",
    )

@app.get("/", response_class=HTMLResponse)
def root():
    return open("app/static/index.html").read()

class ReviewInput(BaseModel):
    text: str
    model: str = "distilbert-base-uncased-finetuned-sst-2-english"
    industry: Optional[str] = None
    aspects: bool = False
    follow_up: Optional[str] = None
    product_category: Optional[str] = None
    device: Optional[str] = None
    intelligence: Optional[bool] = False
    verbosity: Optional[str] = "detailed"
    explain: Optional[bool] = False

class BulkReviewInput(BaseModel):
    reviews: list[str]
    model: str = "distilbert-base-uncased-finetuned-sst-2-english"
    industry: Optional[list[str]] = None
    aspects: bool = False
    product_category: Optional[list[str]] = None
    device: Optional[list[str]] = None

VALID_API_KEY = "my-secret-key"
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")

summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
emotion_model = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=1)
sentiment_pipelines = {
    "distilbert-base-uncased-finetuned-sst-2-english": pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english"),
    "nlptown/bert-base-multilingual-uncased-sentiment": pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
}

def auto_fill(value: Optional[str], default: str = "Generic") -> str:
    if not value or value.strip().lower() == "auto-detect":
        return default
    return value

@app.post("/bulk/")
async def bulk(data: BulkReviewInput, x_api_key: str = Header(None)):
    if x_api_key != VALID_API_KEY:
        raise HTTPException(status_code=401, detail="Invalid or missing API key")

    sentiment_pipeline = sentiment_pipelines[data.model]
    summaries = summarizer(data.reviews, max_length=80, min_length=20, truncation=True)
    sentiments = sentiment_pipeline(data.reviews)
    emotions = emotion_model(data.reviews)

    results = []
    for i, review in enumerate(data.reviews):
        label = sentiments[i]["label"]
        if "star" in label:
            stars = int(label[0])
            label = "NEGATIVE" if stars <= 2 else "NEUTRAL" if stars == 3 else "POSITIVE"

        result = {
            "review": review,
            "summary": summaries[i]["summary_text"],
            "sentiment": label,
            "emotion": emotions[i][0]["label"],
            "aspects": [],
            "product_category": auto_fill(data.product_category[i]) if data.product_category else None,
            "device": auto_fill(data.device[i], "Web") if data.device else None,
            "industry": auto_fill(data.industry[i]) if data.industry else None,
        }
        results.append(result)

    return {"results": results}

@app.post("/analyze/")
async def analyze(request: Request, data: ReviewInput, x_api_key: str = Header(None)):
    if x_api_key != VALID_API_KEY:
        raise HTTPException(status_code=401, detail="Invalid or missing API key")

    sentiment_pipeline = sentiment_pipelines.get(data.model)
    summary = smart_summarize(data.text) if request.query_params.get("smart") == "1" else summarize_review(data.text)
    sentiment = sentiment_pipeline(data.text)[0]
    label = sentiment["label"]
    if "star" in label:
        stars = int(label[0])
        label = "NEGATIVE" if stars <= 2 else "NEUTRAL" if stars == 3 else "POSITIVE"

    emotion = emotion_model(data.text)[0][0]["label"]

    aspects_list = []
    if data.aspects:
        for asp in ["battery", "price", "camera"]:
            if asp in data.text.lower():
                asp_result = sentiment_pipeline(asp + " " + data.text)[0]
                aspects_list.append({
                    "aspect": asp,
                    "sentiment": asp_result["label"],
                    "score": asp_result["score"]
                })

    follow_up_response = None
    if data.follow_up and data.intelligence:
        follow_up_response = f"[Mocked Detailed Answer in {data.verbosity} mode]"

    explanation = "This summary was generated using transformer-based sequence modeling and contextual keyword expansion." if data.explain else None

    return {
        "summary": summary,
        "sentiment": {"label": label, "score": sentiment["score"]},
        "emotion": emotion,
        "aspects": aspects_list,
        "follow_up": follow_up_response,
        "explanation": explanation,
        "product_category": auto_fill(data.product_category),
        "device": auto_fill(data.device, "Web"),
        "industry": auto_fill(data.industry)
    }

def custom_openapi():
    if app.openapi_schema:
        return app.openapi_schema
    openapi_schema = get_openapi(
        title=app.title,
        version=app.version,
        description="""
<b><span style='color:#4f46e5'>NeuroPulse AI</span></b> · Smart GenAI Feedback Engine<br>
Summarize reviews, detect sentiment/emotion, extract aspects, tag metadata, and ask GPT follow-ups.
""",
        routes=app.routes
    )
    openapi_schema["openapi"] = "3.0.0"
    app.openapi_schema = openapi_schema
    return app.openapi_schema

app.openapi = custom_openapi