churnsight-ai / frontend.py
Hasitha16's picture
Update frontend.py
1c216da verified
raw
history blame
9.9 kB
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
import os
import plotly.express as px
st.set_page_config(page_title="NeuroPulse AI", page_icon="🧠", layout="wide")
if os.path.exists("logo.png"):
st.image("logo.png", width=180)
# Session variables
for key, default in {
"review": "",
"dark_mode": False,
"intelligence_mode": True,
"trigger_example_analysis": False,
"last_response": None,
"followup_answer": None,
}.items():
if key not in st.session_state:
st.session_state[key] = default
# Dark mode CSS
if st.session_state.dark_mode:
st.markdown("""
<style>
html, body, [class*="st-"] {
background-color: #121212;
color: #f5f5f5;
}
.stTextInput > div > div > input,
.stTextArea > div > textarea,
.stSelectbox div div,
.stDownloadButton > button,
.stButton > button {
background-color: #1e1e1e;
color: white;
}
</style>
""", unsafe_allow_html=True)
# Sidebar controls
with st.sidebar:
st.header("βš™οΈ Global Settings")
st.session_state.dark_mode = st.toggle("πŸŒ™ Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("🧠 Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("πŸ” API Token", value="my-secret-key", type="password")
backend_url = st.text_input("🌐 Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("πŸ“Š Sentiment Model", [
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("🏭 Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
product_category = st.selectbox("🧩 Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
verbosity = st.radio("πŸ—£οΈ Response Style", ["Brief", "Detailed"])
voice_lang = st.selectbox("πŸ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# TTS Function
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
mp3.seek(0)
return mp3
# Tabs
tab1, tab2 = st.tabs(["🧠 Single Review", "πŸ“š Bulk CSV"])
# ---- SINGLE REVIEW ----
with tab1:
st.title("🧠 NeuroPulse AI – Multimodal Review Analyzer")
st.markdown("<div style='font-size:16px;color:#888;'>Minimum 20–50 words recommended.</div>", unsafe_allow_html=True)
review = st.text_area("πŸ“ Enter Review", value=st.session_state.review, height=180)
st.session_state.review = review
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("πŸ” Analyze")
with col2:
if st.button("🎲 Example"):
st.session_state.review = (
"I love this phone! Super fast performance, great battery, and smooth UI. "
"Camera is awesome too, though the price is a bit high. Overall, very happy."
)
st.session_state.trigger_example_analysis = True
st.rerun()
with col3:
if st.button("🧹 Clear"):
for key in ["review", "last_response", "followup_answer"]:
st.session_state[key] = ""
st.rerun()
if (analyze or st.session_state.trigger_example_analysis) and st.session_state.review:
st.session_state.trigger_example_analysis = False
st.session_state.followup_answer = None
with st.spinner("Analyzing..."):
try:
payload = {
"text": st.session_state.review,
"model": sentiment_model,
"industry": industry,
"product_category": product_category,
"verbosity": verbosity,
"intelligence": st.session_state.intelligence_mode
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
if res.status_code == 200:
st.session_state.last_response = res.json()
else:
st.error(f"API error: {res.status_code} - {res.json().get('detail')}")
except Exception as e:
st.error(f"🚫 Exception: {e}")
data = st.session_state.last_response
if data:
st.subheader("πŸ“Œ Summary")
st.info(data["summary"])
st.metric("πŸ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"πŸ’’ Emotion: {data['emotion']}")
st.subheader("πŸ”Š Audio")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("⬇️ Download Summary Audio", audio.read(), "summary.mp3")
st.markdown("### πŸ” Got questions?")
sample_questions = ["What did the user like most?", "Any complaints mentioned?", "Is it positive overall?"]
selected_q = st.selectbox("πŸ’‘ Sample Questions", ["Type your own..."] + sample_questions)
custom_q = selected_q if selected_q != "Type your own..." else st.text_input("πŸ” Ask a follow-up")
if custom_q:
with st.spinner("Thinking..."):
try:
follow_payload = {
"text": st.session_state.review,
"question": custom_q,
"verbosity": verbosity
}
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
if res.status_code == 200:
st.session_state.followup_answer = res.json().get("answer")
else:
st.error(f"❌ Follow-up failed: {res.json().get('detail')}")
except Exception as e:
st.error(f"⚠️ Follow-up error: {e}")
if st.session_state.followup_answer:
st.subheader("πŸ” Follow-Up Answer")
st.success(st.session_state.followup_answer)
# ---- BULK CSV ----
with tab2:
st.title("πŸ“š Bulk CSV Upload")
st.markdown("""
Upload a CSV with the following columns:<br>
<code>review</code> (required), <code>industry</code>, <code>product_category</code>, <code>device</code>, <code>follow_up</code> (optional)
""", unsafe_allow_html=True)
with st.expander("πŸ“„ Sample CSV"):
with open("sample_reviews.csv", "rb") as f:
st.download_button("⬇️ Download sample CSV", f, file_name="sample_reviews.csv")
uploaded_file = st.file_uploader("πŸ“ Upload your CSV", type="csv")
if uploaded_file:
if not api_token:
st.error("πŸ” Please enter your API token in the sidebar.")
else:
try:
df = pd.read_csv(uploaded_file)
if "review" not in df.columns:
st.error("CSV must contain a `review` column.")
else:
st.success(f"βœ… Loaded {len(df)} reviews")
for col in ["industry", "product_category", "device", "follow_up"]:
if col not in df.columns:
df[col] = ["Auto-detect"] * len(df)
df[col] = df[col].fillna("Auto-detect").astype(str)
df["industry"] = df["industry"].apply(lambda x: "Generic" if x.lower() == "auto-detect" else x)
df["product_category"] = df["product_category"].apply(lambda x: "General" if x.lower() == "auto-detect" else x)
df["device"] = df["device"].apply(lambda x: "Web" if x.lower() == "auto-detect" else x)
if st.button("πŸ“Š Analyze Bulk Reviews", use_container_width=True):
with st.spinner("Processing..."):
try:
payload = {
"reviews": df["review"].tolist(),
"model": sentiment_model,
"industry": df["industry"].tolist(),
"product_category": df["product_category"].tolist(),
"device": df["device"].tolist(),
"follow_up": df["follow_up"].tolist(),
"intelligence": st.session_state.intelligence_mode,
}
res = requests.post(
f"{backend_url}/bulk/?token={api_token}",
json=payload
)
if res.status_code == 200:
results = pd.DataFrame(res.json()["results"])
st.dataframe(results)
if "sentiment" in results.columns:
fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
st.plotly_chart(fig)
st.download_button("⬇️ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv")
else:
st.error(f"❌ Bulk Error {res.status_code}: {res.json().get('detail', 'Unknown error')}")
except Exception as e:
st.error(f"🚨 Processing Error: {e}")
except Exception as e:
st.error(f"❌ File Read Error: {e}")