churnsight-ai / frontend.py
Hasitha16's picture
Update frontend.py
63a3c84 verified
raw
history blame
9.75 kB
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
import os
import plotly.express as px
from datetime import datetime
import uuid
# Simulated in-memory storage for churn log (replace with a database or file in production)
if "churn_log" not in st.session_state:
st.session_state.churn_log = []
st.set_page_config(page_title="ChurnSight AI", page_icon="🧠", layout="wide")
if os.path.exists("logo.png"):
st.image("logo.png", width=180)
# Session state setup
defaults = {
"review": "",
"dark_mode": False,
"intelligence_mode": True,
"trigger_example_analysis": False,
"last_response": None,
"followup_answer": None
}
for k, v in defaults.items():
if k not in st.session_state:
st.session_state[k] = v
# Dark mode styling
if st.session_state.dark_mode:
st.markdown("""
<style>
html, body, [class*="st-"] {
background-color: #121212;
color: #f5f5f5;
}
.stTextInput > div > div > input,
.stTextArea > div > textarea,
.stSelectbox div div,
.stDownloadButton > button,
.stButton > button {
background-color: #1e1e1e;
color: white;
}
</style>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.header("βš™οΈ PM Config")
st.session_state.dark_mode = st.toggle("πŸŒ™ Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("🧠 Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("πŸ” API Token", value="my-secret-key", type="password")
if not api_token or api_token.strip() == "my-secret-key":
st.warning("πŸ§ͺ Demo Mode β€” Not all features active.")
backend_url = st.text_input("🌐 Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("πŸ“Š Sentiment Model", [
"Auto-detect",
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("🏭 Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
product_category = st.selectbox("🧩 Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
use_aspects = st.checkbox("πŸ” Detect Pain Points")
use_explain_bulk = st.checkbox("🧠 Generate PM Insight (Bulk)")
verbosity = st.radio("πŸ—£οΈ Response Style", ["Brief", "Detailed"])
voice_lang = st.selectbox("πŸ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# TTS
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
mp3.seek(0)
return mp3
tab1, tab2 = st.tabs(["🧠 Analyze Review", "πŸ“š Bulk Reviews"])
# === SINGLE REVIEW ===
with tab1:
st.title("πŸ“Š ChurnSight AI β€” Product Feedback Assistant")
st.markdown("Analyze feedback to detect churn risk, extract pain points, and support product decisions.")
review = st.text_area("πŸ“ Enter Customer Feedback", value=st.session_state.review, height=180)
st.session_state.review = review
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("πŸ” Analyze")
with col2:
if st.button("🎲 Example"):
st.session_state.review = (
"The app crashes every time I try to checkout. It's so slow and unresponsive. "
"Customer support never replied. I'm switching to another brand."
)
st.session_state.trigger_example_analysis = True
st.rerun()
with col3:
if st.button("🧹 Clear"):
for key in ["review", "last_response", "followup_answer"]:
st.session_state[key] = ""
st.rerun()
if (analyze or st.session_state.trigger_example_analysis) and st.session_state.review:
st.session_state.trigger_example_analysis = False
st.session_state.followup_answer = None
with st.spinner("Analyzing feedback..."):
try:
model = None if sentiment_model == "Auto-detect" else sentiment_model
payload = {
"text": st.session_state.review,
"model": model or "distilbert-base-uncased-finetuned-sst-2-english",
"industry": industry,
"product_category": product_category,
"verbosity": verbosity,
"aspects": use_aspects,
"intelligence": st.session_state.intelligence_mode
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
if res.status_code == 200:
st.session_state.last_response = res.json()
else:
st.error(f"API error: {res.status_code} - {res.json().get('detail')}")
except Exception as e:
st.error(f"🚫 Exception: {e}")
data = st.session_state.last_response
if data:
st.subheader("πŸ“Œ PM Insight Summary")
st.info(data["summary"])
st.caption("πŸ”Ž Summary Model: facebook/bart-large-cnn | " + verbosity + " response")
st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web")
st.metric("πŸ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"πŸ’’ Emotion: {data['emotion']}")
if "churn_risk" in data:
risk = data["churn_risk"]
color = "πŸ”΄" if risk == "High Risk" else "🟒"
st.metric("🚨 Churn Risk", f"{color} {risk}")
if "pain_points" in data and data["pain_points"]:
st.error("πŸ” Pain Points: " + ", ".join(data["pain_points"]))
# Add churn risk to session log
try:
st.session_state.churn_log.append({
"timestamp": datetime.now(),
"product": data.get("product_category", "General"),
"churn_risk": data.get("churn_risk", "Unknown"),
"session_id": str(uuid.uuid4())
})
# Keep log lightweight
if len(st.session_state.churn_log) > 1000:
st.session_state.churn_log = st.session_state.churn_log[-1000:]
except Exception as e:
st.warning(f"πŸ§ͺ Logging failed: {e}")
st.subheader("πŸ”Š Audio Summary")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("⬇️ Download Audio", audio.read(), "summary.mp3")
st.markdown("### πŸ” Ask a Follow-Up")
# πŸ’‘ Smarter Follow-Up Suggestion Logic
sentiment = data["sentiment"]["label"].lower()
churn = data.get("churn_risk", "")
pain = data.get("pain_points", [])
if sentiment == "positive" and churn == "Low Risk":
sample_questions = [
"What features impressed the user?",
"Would they recommend the product?",
"What delighted the customer most?"
]
elif sentiment == "negative" or churn == "High Risk" or pain:
sample_questions = [
"What made the user upset?",
"Any feature complaints?",
"Is this user likely to churn?"
]
else:
sample_questions = [
"What are the key takeaways?",
"How can this review guide product changes?",
"Is there any concern raised?"
]
selected_q = st.selectbox("πŸ’‘ Suggested Questions", ["Type your own..."] + sample_questions)
custom_q = selected_q if selected_q != "Type your own..." else st.text_input("πŸ” Follow-up Question")
if custom_q:
with st.spinner("Thinking..."):
try:
follow_payload = {
"text": st.session_state.review,
"question": custom_q,
"verbosity": verbosity
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
if res.status_code == 200:
st.session_state.followup_answer = res.json().get("answer")
else:
st.error(f"❌ Follow-up failed: {res.json().get('detail')}")
except Exception as e:
st.error(f"⚠️ Follow-up error: {e}")
if st.session_state.followup_answer:
st.subheader("βœ… Answer")
st.success(st.session_state.followup_answer)
# πŸ“ˆ Show churn trend chart (optional)
if st.checkbox("πŸ“Š Show Churn Risk Trends", value=False):
try:
df = pd.DataFrame(st.session_state.churn_log)
df["date"] = pd.to_datetime(df["timestamp"]).dt.date
trend = df.groupby(["date", "churn_risk"]).size().unstack(fill_value=0).reset_index()
st.markdown("#### πŸ“… Daily Churn Trend")
fig = px.bar(trend, x="date", y=["High Risk", "Low Risk"], barmode="group", title="Daily Churn Risk Distribution")
st.plotly_chart(fig, use_container_width=True)
st.download_button("⬇️ Export Trend CSV", trend.to_csv(index=False), "churn_trend.csv", mime="text/csv")
except Exception as e:
st.error(f"❌ Failed to generate trend: {e}")