Spaces:
Sleeping
Sleeping
| import os | |
| os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache" | |
| os.environ["HF_HOME"] = "/tmp/hf-home" | |
| import nltk | |
| nltk.download("punkt", download_dir="/tmp/nltk_data") | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.cluster import KMeans | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| from nltk.tokenize import sent_tokenize | |
| from transformers import pipeline | |
| import numpy as np | |
| summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") | |
| def summarize_review(text): | |
| return summarizer(text, max_length=60, min_length=10, do_sample=False)[0]["summary_text"] | |
| def smart_summarize(text, n_clusters=1): | |
| sentences = sent_tokenize(text) | |
| if len(sentences) <= 1: | |
| return text | |
| tfidf_matrix = TfidfVectorizer(stop_words="english").fit_transform(sentences) | |
| if len(sentences) <= n_clusters: | |
| return " ".join(sentences) | |
| kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(tfidf_matrix) | |
| avg = [] | |
| for i in range(n_clusters): | |
| idx = np.where(kmeans.labels_ == i)[0] | |
| if not len(idx): continue | |
| avg_vector = tfidf_matrix[idx].mean(axis=0) | |
| sim = cosine_similarity(avg_vector, tfidf_matrix[idx]) | |
| avg.append(sentences[idx[np.argmax(sim)]]) | |
| return " ".join(sorted(avg, key=sentences.index)) |