Spaces:
Running
Running
import os | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache" | |
os.environ["HF_HOME"] = "/tmp/hf-home" | |
import nltk | |
nltk.download("punkt", download_dir="/tmp/nltk_data") | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.cluster import KMeans | |
from sklearn.metrics.pairwise import cosine_similarity | |
from nltk.tokenize import sent_tokenize | |
from transformers import pipeline | |
import numpy as np | |
# Load summarizer model | |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") | |
def summarize_review(text): | |
"""Standard transformer-based summarization""" | |
return summarizer(text, max_length=60, min_length=10, do_sample=False)[0]["summary_text"] | |
def smart_summarize(text, n_clusters=1): | |
""" | |
Clustering + cosine similarity-based summarization | |
Selects most representative sentence(s) from each cluster | |
""" | |
sentences = sent_tokenize(text) | |
if len(sentences) <= 1: | |
return text | |
tfidf = TfidfVectorizer(stop_words="english") | |
tfidf_matrix = tfidf.fit_transform(sentences) | |
if len(sentences) <= n_clusters: | |
return " ".join(sentences) | |
kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(tfidf_matrix) | |
summary_sentences = [] | |
for i in range(n_clusters): | |
idx = np.where(kmeans.labels_ == i)[0] | |
if not len(idx): | |
continue | |
# Average vector from cluster, converted to ndarray | |
avg_vector = np.asarray(tfidf_matrix[idx].mean(axis=0)) | |
# Similarity computation (ensure both inputs are arrays) | |
sim = cosine_similarity(avg_vector, tfidf_matrix[idx].toarray()) | |
# Select sentence with highest similarity to avg | |
most_representative = sentences[idx[np.argmax(sim)]] | |
summary_sentences.append(most_representative) | |
# Preserve original sentence order | |
return " ".join(sorted(summary_sentences, key=sentences.index)) | |