Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import pandas as pd | |
from gtts import gTTS | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
import os | |
st.set_page_config(page_title="NeuroPulse AI", page_icon="π§ ", layout="wide") | |
logo_path = os.path.join("app", "static", "logo.png") | |
if os.path.exists(logo_path): | |
st.image(logo_path, width=160) | |
# Session state | |
if "history" not in st.session_state: | |
st.session_state.history = [] | |
if "dark_mode" not in st.session_state: | |
st.session_state.dark_mode = False | |
# Sidebar | |
with st.sidebar: | |
st.header("βοΈ Settings") | |
st.session_state.dark_mode = st.toggle("π Dark Mode", value=st.session_state.dark_mode) | |
sentiment_model = st.selectbox("π Sentiment Model", [ | |
"distilbert-base-uncased-finetuned-sst-2-english", | |
"nlptown/bert-base-multilingual-uncased-sentiment" | |
]) | |
industry = st.selectbox("π Industry Context", [ | |
"Generic", "E-commerce", "Healthcare", "Education", "Travel", "Banking", "Insurance" | |
]) | |
product_category = st.selectbox("π§© Product Category", [ | |
"General", "Mobile Devices", "Laptops", "Healthcare Devices", "Banking App", | |
"Travel Service", "Educational Tool", "Insurance Portal" | |
]) | |
device_type = st.selectbox("π» Device Type", [ | |
"Web", "Android", "iOS", "Desktop", "Smartwatch", "Kiosk" | |
]) | |
use_aspects = st.checkbox("π Enable Aspect-Based Analysis") | |
use_smart_summary = st.checkbox("π§ Use Smart Summary (clustered key points)") | |
use_smart_summary_bulk = st.checkbox("π§ Smart Summary for Bulk CSV") | |
follow_up = st.text_input("π Follow-up Question") | |
voice_lang = st.selectbox("π Voice Language", ["en", "fr", "es", "de", "hi", "zh"]) | |
backend_url = st.text_input("π₯οΈ Backend URL", value="http://0.0.0.0:8000") | |
api_token = st.text_input("π API Token", type="password") | |
# Tabs | |
tab1, tab2 = st.tabs(["π§ Single Review", "π Bulk CSV"]) | |
def speak(text, lang='en'): | |
tts = gTTS(text, lang=lang) | |
mp3 = BytesIO() | |
tts.write_to_fp(mp3) | |
b64 = base64.b64encode(mp3.getvalue()).decode() | |
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True) | |
mp3.seek(0) | |
return mp3 | |
# Tab: Single Review | |
with tab1: | |
st.title("π§ NeuroPulse AI β Multimodal Review Analyzer") | |
review = st.session_state.get("review", "") | |
review = st.text_area("π Enter a Review", value=review, height=160) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
analyze = st.button("π Analyze") | |
with col2: | |
if st.button("π² Example"): | |
st.session_state["review"] = "App was smooth, but the transaction failed twice on Android." | |
st.rerun() | |
with col3: | |
if st.button("π§Ή Clear"): | |
st.session_state["review"] = "" | |
st.rerun() | |
if analyze and review: | |
with st.spinner("Analyzing..."): | |
try: | |
payload = { | |
"text": review, | |
"model": sentiment_model, | |
"industry": industry, | |
"aspects": use_aspects, | |
"follow_up": follow_up, | |
"product_category": product_category, | |
"device": device_type | |
} | |
headers = {"X-API-Key": api_token} if api_token else {} | |
params = {"smart": "1"} if use_smart_summary else {} | |
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers, params=params) | |
if res.status_code == 200: | |
data = res.json() | |
st.success("β Analysis Complete") | |
st.subheader("π Summary") | |
st.info(data["summary"]) | |
st.caption(f"π§ Summary Type: {'Smart Summary' if use_smart_summary else 'Standard Model'}") | |
st.subheader("π Audio") | |
audio = speak(data["summary"], lang=voice_lang) | |
st.download_button("β¬οΈ Download Summary Audio", audio.read(), "summary.mp3", mime="audio/mp3") | |
st.metric("π Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}") | |
st.info(f"π’ Emotion: {data['emotion']}") | |
if data.get("aspects"): | |
st.subheader("π¬ Aspects") | |
for a in data["aspects"]: | |
st.write(f"πΉ {a['aspect']}: {a['sentiment']} ({a['score']:.2%})") | |
if data.get("follow_up"): | |
st.subheader("π€ Follow-Up Response") | |
st.warning(data["follow_up"]) | |
else: | |
st.error(f"β API Error: {res.status_code}") | |
except Exception as e: | |
st.error(f"π« {e}") | |
# Tab: Bulk CSV | |
with tab2: | |
st.title("π Bulk CSV Upload") | |
uploaded_file = st.file_uploader("Upload CSV with `review` column", type="csv") | |
if uploaded_file: | |
try: | |
df = pd.read_csv(uploaded_file) | |
if "review" in df.columns: | |
st.success(f"β Loaded {len(df)} reviews") | |
for col in ["industry", "product_category", "device"]: | |
if col not in df.columns: | |
df[col] = [""] * len(df) | |
df[col] = df[col].fillna("").astype(str) | |
if st.button("π Analyze Bulk Reviews"): | |
with st.spinner("Processing..."): | |
payload = { | |
"reviews": df["review"].tolist(), | |
"model": sentiment_model, | |
"aspects": use_aspects, | |
"industry": df["industry"].tolist(), | |
"product_category": df["product_category"].tolist(), | |
"device": df["device"].tolist() | |
} | |
headers = {"X-API-Key": api_token} if api_token else {} | |
params = {"smart": "1"} if use_smart_summary_bulk else {} | |
res = requests.post(f"{backend_url}/bulk/", json=payload, headers=headers, params=params) | |
if res.status_code == 200: | |
results = pd.DataFrame(res.json()["results"]) | |
results["summary_type"] = "Smart" if use_smart_summary_bulk else "Standard" | |
st.dataframe(results) | |
st.download_button("β¬οΈ Download Results CSV", results.to_csv(index=False), "bulk_results.csv", mime="text/csv") | |
else: | |
st.error(f"β Bulk Analysis Failed: {res.status_code}") | |
else: | |
st.error("CSV must contain a column named `review`.") | |
except Exception as e: | |
st.error(f"β File Error: {e}") | |