Spaces:
Sleeping
Sleeping
import os | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache" | |
from typing import List, Optional | |
from pydantic import BaseModel | |
from transformers import pipeline | |
import nltk.data | |
# β Extra: Smart Summarization Imports | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.cluster import KMeans | |
from nltk.tokenize import sent_tokenize | |
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") | |
sentiment_analyzer = pipeline("sentiment-analysis") | |
# π§ Basic Summarization (Abstractive) | |
def summarize_review(text): | |
return summarizer(text, max_length=60, min_length=10, do_sample=False, no_repeat_ngram_size=3)[0]["summary_text"] | |
# π§ Smart Summarization (Clustered Key Sentences) | |
def smart_summarize(text, n_clusters=1): | |
"""Improved summarization using clustering on sentence embeddings""" | |
tokenizer = nltk.tokenize.PunktSentenceTokenizer() # β Use default trained Punkt tokenizer | |
sentences = tokenizer.tokenize(text) | |
if len(sentences) <= 1: | |
return text | |
vectorizer = TfidfVectorizer(stop_words="english") | |
tfidf_matrix = vectorizer.fit_transform(sentences) | |
if len(sentences) <= n_clusters: | |
return " ".join(sentences) | |
kmeans = KMeans(n_clusters=n_clusters, random_state=42) | |
kmeans.fit(tfidf_matrix) | |
avg = [] | |
for i in range(n_clusters): | |
idx = np.where(kmeans.labels_ == i)[0] | |
if len(idx) == 0: | |
continue | |
avg_vector = tfidf_matrix[idx].mean(axis=0).A1.reshape(1, -1) # Convert np.matrix to ndarray | |
sim = cosine_similarity(avg_vector, tfidf_matrix[idx]) | |
most_representative_idx = idx[np.argmax(sim)] | |
avg.append(sentences[most_representative_idx]) | |
return " ".join(sorted(avg, key=sentences.index)) | |
# π Sentiment Detection | |
def analyze_sentiment(text): | |
result = sentiment_analyzer(text)[0] | |
label = result["label"] | |
score = result["score"] | |
if "star" in label: | |
stars = int(label[0]) | |
if stars <= 2: | |
label = "NEGATIVE" | |
elif stars == 3: | |
label = "NEUTRAL" | |
else: | |
label = "POSITIVE" | |
return { | |
"label": label, | |
"score": score | |
} | |
# π₯ Emotion Detection (heuristic-based) | |
def detect_emotion(text): | |
text_lower = text.lower() | |
if "angry" in text_lower or "hate" in text_lower: | |
return "anger" | |
elif "happy" in text_lower or "love" in text_lower: | |
return "joy" | |
elif "sad" in text_lower or "disappointed" in text_lower: | |
return "sadness" | |
elif "confused" in text_lower or "unclear" in text_lower: | |
return "confusion" | |
else: | |
return "neutral" | |
# π§© Aspect-Based Sentiment (mock) | |
def extract_aspect_sentiment(text, aspects: list): | |
results = {} | |
text_lower = text.lower() | |
for asp in aspects: | |
label = "positive" if asp in text_lower and "not" not in text_lower else "neutral" | |
results[asp] = { | |
"label": label, | |
"confidence": 0.85 | |
} | |
return results | |
# β Pydantic Schemas for FastAPI | |
class ReviewInput(BaseModel): | |
text: str | |
model: str = "distilbert-base-uncased-finetuned-sst-2-english" | |
industry: str = "Generic" | |
aspects: bool = False | |
follow_up: Optional[str] = None | |
product_category: Optional[str] = None | |
device: Optional[str] = None | |
class BulkReviewInput(BaseModel): | |
reviews: List[str] | |
model: str = "distilbert-base-uncased-finetuned-sst-2-english" | |
industry: str = "Generic" | |
aspects: bool = False | |
product_category: Optional[str] = None | |
device: Optional[str] = None | |
class TranslationInput(BaseModel): | |
text: str | |
target_lang: str = "fr" | |
class ChatInput(BaseModel): | |
question: str | |
context: str |