Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import pandas as pd | |
from gtts import gTTS | |
import base64 | |
from io import BytesIO | |
import os | |
import plotly.express as px | |
from datetime import datetime | |
import uuid | |
# Simulated in-memory storage for churn log | |
if "churn_log" not in st.session_state: | |
st.session_state.churn_log = [] | |
st.set_page_config(page_title="ChurnSight AI", page_icon="π§ ", layout="wide") | |
if os.path.exists("logo.png"): | |
st.image("logo.png", width=180) | |
# Session state setup | |
defaults = { | |
"review": "", | |
"dark_mode": False, | |
"intelligence_mode": True, | |
"trigger_example_analysis": False, | |
"last_response": None, | |
"followup_answer": None | |
} | |
for k, v in defaults.items(): | |
if k not in st.session_state: | |
st.session_state[k] = v | |
# Dark mode styling | |
if st.session_state.dark_mode: | |
st.markdown(""" | |
<style> | |
html, body, [class*="st-"] { | |
background-color: #121212; | |
color: #f5f5f5; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Sidebar config | |
with st.sidebar: | |
st.header("βοΈ PM Config") | |
st.session_state.dark_mode = st.toggle("π Dark Mode", value=st.session_state.dark_mode) | |
st.session_state.intelligence_mode = st.toggle("π§ Intelligence Mode", value=st.session_state.intelligence_mode) | |
if api_token.strip() == "my-secret-key": | |
st.warning("π§ͺ Demo Mode β Not all features are active. Add your API token to unlock full features.") | |
backend_url = st.text_input("π Backend URL", value="http://localhost:8000") | |
sentiment_model = st.selectbox("π Sentiment Model", ["Auto-detect", "distilbert-base-uncased-finetuned-sst-2-english"]) | |
industry = st.selectbox("π Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"]) | |
product_category = st.selectbox("π§© Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"]) | |
use_aspects = st.checkbox("π Detect Pain Points") | |
use_explain_bulk = st.checkbox("π§ Generate PM Insight (Bulk)") | |
verbosity = st.radio("π£οΈ Response Style", ["Brief", "Detailed"]) | |
voice_lang = st.selectbox("π Voice Language", ["en", "fr", "es", "de", "hi", "zh"]) | |
# Text-to-Speech | |
def speak(text, lang='en'): | |
tts = gTTS(text, lang=lang) | |
mp3 = BytesIO() | |
tts.write_to_fp(mp3) | |
b64 = base64.b64encode(mp3.getvalue()).decode() | |
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True) | |
mp3.seek(0) | |
return mp3 | |
tab1, tab2 = st.tabs(["π§ Analyze Review", "π Bulk Reviews"]) | |
# === SINGLE REVIEW ANALYSIS === | |
with tab1: | |
st.title("π ChurnSight AI β Product Feedback Assistant") | |
st.markdown("Analyze feedback to detect churn risk, extract pain points, and support product decisions.") | |
review = st.text_area("π Enter Customer Feedback", value=st.session_state.review, height=180) | |
st.session_state.review = review | |
col1, col2, col3 = st.columns(3) | |
if col1.button("π Analyze"): | |
st.session_state.trigger_example_analysis = False | |
if col2.button("π² Example"): | |
st.session_state.review = ( | |
"The app crashes every time I try to checkout. It's so slow and unresponsive. " | |
"Customer support never replied. I'm switching to another brand." | |
) | |
st.session_state.trigger_example_analysis = True | |
st.rerun() | |
if col3.button("π§Ή Clear"): | |
for key in ["review", "last_response", "followup_answer"]: | |
st.session_state[key] = "" | |
st.rerun() | |
if st.session_state.review and (analyze or st.session_state.trigger_example_analysis): | |
with st.spinner("Analyzing feedback..."): | |
try: | |
payload = { | |
"text": st.session_state.review, | |
"model": "distilbert-base-uncased-finetuned-sst-2-english" if sentiment_model == "Auto-detect" else sentiment_model, | |
"industry": industry, | |
"product_category": product_category, | |
"verbosity": verbosity, | |
"aspects": use_aspects, | |
"intelligence": st.session_state.intelligence_mode | |
} | |
headers = {"x-api-key": api_token} | |
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers) | |
if res.ok: | |
st.session_state.last_response = res.json() | |
else: | |
st.error(f"Error: {res.status_code} - {res.json().get('detail')}") | |
except Exception as e: | |
st.error(f"π« Exception: {e}") | |
data = st.session_state.last_response | |
if data: | |
st.subheader("π PM Insight Summary") | |
st.info(data["summary"]) | |
st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web") | |
st.metric("π Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}") | |
st.info(f"π’ Emotion: {data['emotion']}") | |
if "churn_risk" in data: | |
risk = data["churn_risk"] | |
color = "π΄" if risk == "High Risk" else "π’" | |
st.metric("π¨ Churn Risk", f"{color} {risk}") | |
if data.get("pain_points"): | |
st.error("π Pain Points: " + ", ".join(data["pain_points"])) | |
# Add to churn log | |
try: | |
st.session_state.churn_log.append({ | |
"timestamp": datetime.now(), | |
"product": data.get("product_category", "General"), | |
"churn_risk": data.get("churn_risk", "Unknown"), | |
"session_id": str(uuid.uuid4()) | |
}) | |
if len(st.session_state.churn_log) > 1000: | |
st.session_state.churn_log = st.session_state.churn_log[-1000:] | |
except Exception as e: | |
st.warning(f"π§ͺ Logging failed: {e}") | |
st.subheader("π Audio Summary") | |
audio = speak(data["summary"], lang=voice_lang) | |
st.download_button("β¬οΈ Download Audio", audio.read(), "summary.mp3") | |
st.markdown("### π Ask a Follow-Up") | |
sentiment = data["sentiment"]["label"].lower() | |
churn = data.get("churn_risk", "") | |
pain = data.get("pain_points", []) | |
if sentiment == "positive" and churn == "Low Risk": | |
suggestions = ["What features impressed the user?", "Would they recommend the product?"] | |
elif churn == "High Risk": | |
suggestions = ["What made the user upset?", "Is this user likely to churn?"] | |
else: | |
suggestions = ["What are the key takeaways?", "Is there any concern raised?"] | |
selected_q = st.selectbox("π‘ Suggested Questions", ["Type your own..."] + suggestions) | |
q_input = st.text_input("π Your Question") if selected_q == "Type your own..." else selected_q | |
if q_input: | |
follow_payload = {"text": st.session_state.review, "question": q_input, "verbosity": verbosity} | |
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers) | |
if res.ok: | |
st.success(res.json().get("answer")) | |
else: | |
st.error("Failed to answer.") | |
if st.checkbox("π Show Churn Risk Trends"): | |
try: | |
df = pd.DataFrame(st.session_state.churn_log) | |
df["date"] = pd.to_datetime(df["timestamp"]).dt.date | |
trend = df.groupby(["date", "churn_risk"]).size().unstack(fill_value=0).reset_index() | |
st.markdown("#### π Daily Churn Trend") | |
fig = px.bar(trend, x="date", y=["High Risk", "Low Risk"], barmode="group") | |
st.plotly_chart(fig, use_container_width=True) | |
st.download_button("β¬οΈ Export Trend CSV", trend.to_csv(index=False), "churn_trend.csv") | |
except Exception as e: | |
st.error(f"Trend error: {e}") | |
# === BULK REVIEW ANALYSIS === | |
with tab2: | |
st.title("π Bulk Feedback Analysis") | |
bulk_input = st.text_area("π₯ Paste multiple reviews (one per line)", height=250) | |
if st.button("π Analyze Bulk"): | |
lines = [l.strip() for l in bulk_input.strip().splitlines() if l.strip()] | |
payload = { | |
"reviews": lines, | |
"model": "distilbert-base-uncased-finetuned-sst-2-english" if sentiment_model == "Auto-detect" else sentiment_model, | |
"industry": None, | |
"product_category": None, | |
"device": None, | |
"aspects": use_aspects, | |
"intelligence": st.session_state.intelligence_mode | |
} | |
try: | |
res = requests.post(f"{backend_url}/bulk/?token={api_token}", json=payload) | |
if res.ok: | |
results = res.json().get("results", []) | |
df = pd.DataFrame(results) | |
st.dataframe(df) | |
st.download_button("β¬οΈ Export Results CSV", df.to_csv(index=False), "bulk_results.csv") | |
else: | |
st.error(f"API Error: {res.status_code}") | |
except Exception as e: | |
st.error(f"Bulk analysis failed: {e}") | |