churnsight-ai / frontend.py
Hasitha16's picture
Upload frontend.py
fc94552 verified
raw
history blame
10.6 kB
import streamlit as st
import requests
import pandas as pd
from gtts import gTTS
import base64
from io import BytesIO
import os
import plotly.express as px
st.set_page_config(page_title="NeuroPulse AI", page_icon="🧠", layout="wide")
if os.path.exists("logo.png"):
st.image("logo.png", width=180)
# Session state setup
defaults = {
"review": "",
"dark_mode": False,
"intelligence_mode": True,
"trigger_example_analysis": False,
"last_response": None,
"followup_answer": None
}
for k, v in defaults.items():
if k not in st.session_state:
st.session_state[k] = v
# Dark mode styling
if st.session_state.dark_mode:
st.markdown("""
<style>
html, body, [class*="st-"] {
background-color: #121212;
color: #f5f5f5;
}
.stTextInput > div > div > input,
.stTextArea > div > textarea,
.stSelectbox div div,
.stDownloadButton > button,
.stButton > button {
background-color: #1e1e1e;
color: white;
}
</style>
""", unsafe_allow_html=True)
# Sidebar settings
with st.sidebar:
st.header("βš™οΈ Global Settings")
st.session_state.dark_mode = st.toggle("πŸŒ™ Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("🧠 Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("πŸ” API Token", value="my-secret-key", type="password")
if not api_token or api_token.strip() == "my-secret-key":
st.warning("πŸ§ͺ Running in demo mode β€” for full access, enter a valid API key.")
backend_url = st.text_input("🌐 Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("πŸ“Š Sentiment Model", [
"Auto-detect",
"distilbert-base-uncased-finetuned-sst-2-english",
"nlptown/bert-base-multilingual-uncased-sentiment"
])
industry = st.selectbox("🏭 Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
product_category = st.selectbox("🧩 Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
use_aspects = st.checkbox("πŸ”¬ Enable Aspect Analysis")
use_explain_bulk = st.checkbox("🧠 Generate Explanations (Bulk)")
verbosity = st.radio("πŸ—£οΈ Response Style", ["Brief", "Detailed"])
voice_lang = st.selectbox("πŸ”ˆ Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
# TTS
def speak(text, lang='en'):
tts = gTTS(text, lang=lang)
mp3 = BytesIO()
tts.write_to_fp(mp3)
b64 = base64.b64encode(mp3.getvalue()).decode()
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True)
mp3.seek(0)
return mp3
tab1, tab2 = st.tabs(["🧠 Single Review", "πŸ“š Bulk CSV"])
# ==== SINGLE REVIEW ====
with tab1:
st.title("🧠 NeuroPulse AI – Multimodal Review Analyzer")
st.markdown("<div style='font-size:16px;color:#888;'>Minimum 20–50 words recommended.</div>", unsafe_allow_html=True)
review = st.text_area("πŸ“ Enter Review", value=st.session_state.review, height=180)
st.session_state.review = review
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("πŸ” Analyze")
with col2:
if st.button("🎲 Example"):
st.session_state.review = (
"I love this phone! Super fast performance, great battery, and smooth UI. "
"Camera is awesome too, though the price is a bit high. Overall, very happy."
)
st.session_state.trigger_example_analysis = True
st.rerun()
with col3:
if st.button("🧹 Clear"):
for key in ["review", "last_response", "followup_answer"]:
st.session_state[key] = ""
st.rerun()
if (analyze or st.session_state.trigger_example_analysis) and st.session_state.review:
st.session_state.trigger_example_analysis = False
st.session_state.followup_answer = None
with st.spinner("Analyzing..."):
try:
model = None if sentiment_model == "Auto-detect" else sentiment_model
payload = {
"text": st.session_state.review,
"model": model or "distilbert-base-uncased-finetuned-sst-2-english",
"industry": industry,
"product_category": product_category,
"verbosity": verbosity,
"aspects": use_aspects,
"intelligence": st.session_state.intelligence_mode
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
if res.status_code == 200:
st.session_state.last_response = res.json()
else:
st.error(f"API error: {res.status_code} - {res.json().get('detail')}")
except Exception as e:
st.error(f"🚫 Exception: {e}")
data = st.session_state.last_response
if data:
st.subheader("πŸ“Œ Summary")
st.info(data["summary"])
st.caption("🧠 Summary Model: facebook/bart-large-cnn | " + verbosity + " response")
st.markdown(f"**Context:** `{data['industry']}` | `{data['product_category']}` | `Web`")
st.metric("πŸ“Š Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.info(f"πŸ’’ Emotion: {data['emotion']}")
st.subheader("πŸ”Š Audio")
audio = speak(data["summary"], lang=voice_lang)
st.download_button("⬇️ Download Summary Audio", audio.read(), "summary.mp3")
st.markdown("### πŸ” Got questions?")
sample_questions = ["What did the user like most?", "Any complaints mentioned?", "Is it positive overall?"]
selected_q = st.selectbox("πŸ’‘ Sample Questions", ["Type your own..."] + sample_questions)
custom_q = selected_q if selected_q != "Type your own..." else st.text_input("πŸ” Ask a follow-up")
if custom_q:
with st.spinner("Thinking..."):
try:
follow_payload = {
"text": st.session_state.review,
"question": custom_q,
"verbosity": verbosity
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
if res.status_code == 200:
st.session_state.followup_answer = res.json().get("answer")
else:
st.error(f"❌ Follow-up failed: {res.json().get('detail')}")
except Exception as e:
st.error(f"⚠️ Follow-up error: {e}")
if st.session_state.followup_answer:
st.subheader("πŸ” Follow-Up Answer")
st.success(st.session_state.followup_answer)
# ==== BULK CSV ====
with tab2:
st.title("πŸ“š Bulk CSV Upload")
st.markdown("""
Upload a CSV with columns:<br>
<code>review</code>, <code>industry</code>, <code>product_category</code>, <code>device</code>, <code>follow_up</code> (optional)
""", unsafe_allow_html=True)
with st.expander("πŸ“„ Sample CSV"):
with open("sample_reviews.csv", "rb") as f:
st.download_button("⬇️ Download sample CSV", f, file_name="sample_reviews.csv")
uploaded_file = st.file_uploader("πŸ“ Upload your CSV", type="csv")
if uploaded_file:
if not api_token:
st.error("πŸ” Please enter your API token in the sidebar.")
else:
try:
df = pd.read_csv(uploaded_file)
if "review" not in df.columns:
st.error("CSV must contain a `review` column.")
else:
for col in ["industry", "product_category", "device", "follow_up"]:
if col not in df.columns:
df[col] = ["Auto-detect"] * len(df)
df[col] = df[col].fillna("Auto-detect").astype(str)
df["industry"] = df["industry"].apply(lambda x: "Generic" if x.lower() == "auto-detect" else x)
df["product_category"] = df["product_category"].apply(lambda x: "General" if x.lower() == "auto-detect" else x)
df["device"] = df["device"].apply(lambda x: "Web" if x.lower() == "auto-detect" else x)
if st.button("πŸ“Š Analyze Bulk Reviews", use_container_width=True):
with st.spinner("Processing..."):
try:
payload = {
"reviews": df["review"].tolist(),
"model": None if sentiment_model == "Auto-detect" else sentiment_model,
"industry": df["industry"].tolist(),
"product_category": df["product_category"].tolist(),
"device": df["device"].tolist(),
"follow_up": df["follow_up"].tolist(),
"explain": use_explain_bulk,
"aspects": use_aspects,
"intelligence": st.session_state.intelligence_mode
}
res = requests.post(f"{backend_url}/bulk/?token={api_token}", json=payload)
if res.status_code == 200:
results = pd.DataFrame(res.json()["results"])
st.dataframe(results)
if "sentiment" in results.columns:
fig = px.pie(results, names="sentiment", title="Sentiment Distribution")
st.plotly_chart(fig)
st.download_button("⬇️ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv")
else:
st.error(f"❌ Bulk Error {res.status_code}: {res.json().get('detail')}")
except Exception as e:
st.error(f"🚨 Bulk Processing Error: {e}")
except Exception as e:
st.error(f"❌ File Read Error: {e}")