Spaces:
Running
Running
import streamlit as st | |
import requests | |
import pandas as pd | |
from gtts import gTTS | |
import base64 | |
from io import BytesIO | |
import os | |
import plotly.express as px | |
st.set_page_config(page_title="NeuroPulse AI", page_icon="π§ ", layout="wide") | |
if os.path.exists("logo.png"): | |
st.image("logo.png", width=180) | |
# Session state setup | |
defaults = { | |
"review": "", | |
"dark_mode": False, | |
"intelligence_mode": True, | |
"trigger_example_analysis": False, | |
"last_response": None, | |
"followup_answer": None | |
} | |
for k, v in defaults.items(): | |
if k not in st.session_state: | |
st.session_state[k] = v | |
# Dark mode styling | |
if st.session_state.dark_mode: | |
st.markdown(""" | |
<style> | |
html, body, [class*="st-"] { | |
background-color: #121212; | |
color: #f5f5f5; | |
} | |
.stTextInput > div > div > input, | |
.stTextArea > div > textarea, | |
.stSelectbox div div, | |
.stDownloadButton > button, | |
.stButton > button { | |
background-color: #1e1e1e; | |
color: white; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Sidebar settings | |
with st.sidebar: | |
st.header("βοΈ Global Settings") | |
st.session_state.dark_mode = st.toggle("π Dark Mode", value=st.session_state.dark_mode) | |
st.session_state.intelligence_mode = st.toggle("π§ Intelligence Mode", value=st.session_state.intelligence_mode) | |
api_token = st.text_input("π API Token", value="my-secret-key", type="password") | |
if not api_token or api_token.strip() == "my-secret-key": | |
st.warning("π§ͺ Running in demo mode β for full access, enter a valid API key.") | |
backend_url = st.text_input("π Backend URL", value="http://localhost:8000") | |
sentiment_model = st.selectbox("π Sentiment Model", [ | |
"Auto-detect", | |
"distilbert-base-uncased-finetuned-sst-2-english", | |
"nlptown/bert-base-multilingual-uncased-sentiment" | |
]) | |
industry = st.selectbox("π Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"]) | |
product_category = st.selectbox("π§© Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"]) | |
use_aspects = st.checkbox("π¬ Enable Aspect Analysis") | |
use_explain_bulk = st.checkbox("π§ Generate Explanations (Bulk)") | |
verbosity = st.radio("π£οΈ Response Style", ["Brief", "Detailed"]) | |
voice_lang = st.selectbox("π Voice Language", ["en", "fr", "es", "de", "hi", "zh"]) | |
# TTS | |
def speak(text, lang='en'): | |
tts = gTTS(text, lang=lang) | |
mp3 = BytesIO() | |
tts.write_to_fp(mp3) | |
b64 = base64.b64encode(mp3.getvalue()).decode() | |
st.markdown(f'<audio controls><source src="data:audio/mp3;base64,{b64}" type="audio/mp3"></audio>', unsafe_allow_html=True) | |
mp3.seek(0) | |
return mp3 | |
tab1, tab2 = st.tabs(["π§ Single Review", "π Bulk CSV"]) | |
# ==== SINGLE REVIEW ==== | |
with tab1: | |
st.title("π§ NeuroPulse AI β Multimodal Review Analyzer") | |
st.markdown("<div style='font-size:16px;color:#888;'>Minimum 20β50 words recommended.</div>", unsafe_allow_html=True) | |
review = st.text_area("π Enter Review", value=st.session_state.review, height=180) | |
st.session_state.review = review | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
analyze = st.button("π Analyze") | |
with col2: | |
if st.button("π² Example"): | |
st.session_state.review = ( | |
"I love this phone! Super fast performance, great battery, and smooth UI. " | |
"Camera is awesome too, though the price is a bit high. Overall, very happy." | |
) | |
st.session_state.trigger_example_analysis = True | |
st.rerun() | |
with col3: | |
if st.button("π§Ή Clear"): | |
for key in ["review", "last_response", "followup_answer"]: | |
st.session_state[key] = "" | |
st.rerun() | |
if (analyze or st.session_state.trigger_example_analysis) and st.session_state.review: | |
st.session_state.trigger_example_analysis = False | |
st.session_state.followup_answer = None | |
with st.spinner("Analyzing..."): | |
try: | |
model = None if sentiment_model == "Auto-detect" else sentiment_model | |
payload = { | |
"text": st.session_state.review, | |
"model": model or "distilbert-base-uncased-finetuned-sst-2-english", | |
"industry": industry, | |
"product_category": product_category, | |
"verbosity": verbosity, | |
"aspects": use_aspects, | |
"intelligence": st.session_state.intelligence_mode | |
} | |
headers = {"x-api-key": api_token} | |
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers) | |
if res.status_code == 200: | |
st.session_state.last_response = res.json() | |
else: | |
st.error(f"API error: {res.status_code} - {res.json().get('detail')}") | |
except Exception as e: | |
st.error(f"π« Exception: {e}") | |
data = st.session_state.last_response | |
if data: | |
st.subheader("π Summary") | |
st.info(data["summary"]) | |
st.caption("π§ Summary Model: facebook/bart-large-cnn | " + verbosity + " response") | |
st.markdown(f"**Context:** `{data['industry']}` | `{data['product_category']}` | `Web`") | |
st.metric("π Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}") | |
st.info(f"π’ Emotion: {data['emotion']}") | |
st.subheader("π Audio") | |
audio = speak(data["summary"], lang=voice_lang) | |
st.download_button("β¬οΈ Download Summary Audio", audio.read(), "summary.mp3") | |
st.markdown("### π Got questions?") | |
sample_questions = ["What did the user like most?", "Any complaints mentioned?", "Is it positive overall?"] | |
selected_q = st.selectbox("π‘ Sample Questions", ["Type your own..."] + sample_questions) | |
custom_q = selected_q if selected_q != "Type your own..." else st.text_input("π Ask a follow-up") | |
if custom_q: | |
with st.spinner("Thinking..."): | |
try: | |
follow_payload = { | |
"text": st.session_state.review, | |
"question": custom_q, | |
"verbosity": verbosity | |
} | |
headers = {"x-api-key": api_token} | |
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers) | |
if res.status_code == 200: | |
st.session_state.followup_answer = res.json().get("answer") | |
else: | |
st.error(f"β Follow-up failed: {res.json().get('detail')}") | |
except Exception as e: | |
st.error(f"β οΈ Follow-up error: {e}") | |
if st.session_state.followup_answer: | |
st.subheader("π Follow-Up Answer") | |
st.success(st.session_state.followup_answer) | |
# ==== BULK CSV ==== | |
with tab2: | |
st.title("π Bulk CSV Upload") | |
st.markdown(""" | |
Upload a CSV with columns:<br> | |
<code>review</code>, <code>industry</code>, <code>product_category</code>, <code>device</code>, <code>follow_up</code> (optional) | |
""", unsafe_allow_html=True) | |
with st.expander("π Sample CSV"): | |
with open("sample_reviews.csv", "rb") as f: | |
st.download_button("β¬οΈ Download sample CSV", f, file_name="sample_reviews.csv") | |
uploaded_file = st.file_uploader("π Upload your CSV", type="csv") | |
if uploaded_file: | |
if not api_token: | |
st.error("π Please enter your API token in the sidebar.") | |
else: | |
try: | |
df = pd.read_csv(uploaded_file) | |
if "review" not in df.columns: | |
st.error("CSV must contain a `review` column.") | |
else: | |
for col in ["industry", "product_category", "device", "follow_up"]: | |
if col not in df.columns: | |
df[col] = ["Auto-detect"] * len(df) | |
df[col] = df[col].fillna("Auto-detect").astype(str) | |
df["industry"] = df["industry"].apply(lambda x: "Generic" if x.lower() == "auto-detect" else x) | |
df["product_category"] = df["product_category"].apply(lambda x: "General" if x.lower() == "auto-detect" else x) | |
df["device"] = df["device"].apply(lambda x: "Web" if x.lower() == "auto-detect" else x) | |
if st.button("π Analyze Bulk Reviews", use_container_width=True): | |
with st.spinner("Processing..."): | |
try: | |
payload = { | |
"reviews": df["review"].tolist(), | |
"model": None if sentiment_model == "Auto-detect" else sentiment_model, | |
"industry": df["industry"].tolist(), | |
"product_category": df["product_category"].tolist(), | |
"device": df["device"].tolist(), | |
"follow_up": df["follow_up"].tolist(), | |
"explain": use_explain_bulk, | |
"aspects": use_aspects, | |
"intelligence": st.session_state.intelligence_mode | |
} | |
res = requests.post(f"{backend_url}/bulk/?token={api_token}", json=payload) | |
if res.status_code == 200: | |
results = pd.DataFrame(res.json()["results"]) | |
st.dataframe(results) | |
if "sentiment" in results.columns: | |
fig = px.pie(results, names="sentiment", title="Sentiment Distribution") | |
st.plotly_chart(fig) | |
st.download_button("β¬οΈ Download Results CSV", results.to_csv(index=False), "results.csv", mime="text/csv") | |
else: | |
st.error(f"β Bulk Error {res.status_code}: {res.json().get('detail')}") | |
except Exception as e: | |
st.error(f"π¨ Bulk Processing Error: {e}") | |
except Exception as e: | |
st.error(f"β File Read Error: {e}") | |