Hasitha16 commited on
Commit
0d20ebe
·
verified ·
1 Parent(s): 1f04bc4

Delete main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -195
main.py DELETED
@@ -1,195 +0,0 @@
1
- from fastapi import FastAPI, Request, Header, HTTPException, Query
2
- from fastapi.responses import HTMLResponse, JSONResponse
3
- from fastapi.openapi.docs import get_swagger_ui_html
4
- from fastapi.middleware.cors import CORSMiddleware
5
- from pydantic import BaseModel
6
- from transformers import pipeline
7
- import logging, traceback
8
- from typing import Optional, List, Union
9
-
10
- from model import (
11
- summarize_review, smart_summarize, detect_industry,
12
- detect_product_category, detect_emotion, answer_followup, answer_only
13
- )
14
-
15
- app = FastAPI(
16
- title="🧠 NeuroPulse AI",
17
- description="Multilingual GenAI for smarter feedback — summarization, sentiment, emotion, aspects, Q&A and tags.",
18
- version="2025.1.0",
19
- openapi_url="/openapi.json",
20
- docs_url=None,
21
- redoc_url="/redoc"
22
- )
23
-
24
- app.add_middleware(
25
- CORSMiddleware,
26
- allow_origins=["*"],
27
- allow_credentials=True,
28
- allow_methods=["*"],
29
- allow_headers=["*"],
30
- )
31
-
32
- logging.basicConfig(level=logging.INFO)
33
- VALID_API_KEY = "my-secret-key"
34
-
35
- @app.get("/", response_class=HTMLResponse)
36
- def root():
37
- return "<h1>NeuroPulse AI Backend is Running</h1>"
38
-
39
- @app.get("/docs", include_in_schema=False)
40
- def custom_swagger_ui():
41
- return get_swagger_ui_html(
42
- openapi_url=app.openapi_url,
43
- title="🧠 Swagger UI - NeuroPulse AI",
44
- swagger_favicon_url="https://cdn-icons-png.flaticon.com/512/3794/3794616.png",
45
- swagger_js_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui-bundle.js",
46
- swagger_css_url="https://cdn.jsdelivr.net/npm/[email protected]/swagger-ui.css",
47
- )
48
-
49
- @app.exception_handler(Exception)
50
- async def exception_handler(request: Request, exc: Exception):
51
- logging.error(f"Unhandled Exception: {traceback.format_exc()}")
52
- return JSONResponse(status_code=500, content={"detail": "Internal Server Error. Please contact support."})
53
-
54
- # ==== SCHEMAS ====
55
-
56
- class ReviewInput(BaseModel):
57
- text: str
58
- model: str = "distilbert-base-uncased-finetuned-sst-2-english"
59
- industry: Optional[str] = None
60
- aspects: bool = False
61
- follow_up: Optional[Union[str, List[str]]] = None
62
- product_category: Optional[str] = None
63
- device: Optional[str] = None
64
- intelligence: Optional[bool] = False
65
- verbosity: Optional[str] = "detailed"
66
-
67
- class BulkReviewInput(BaseModel):
68
- reviews: List[str]
69
- model: str = "distilbert-base-uncased-finetuned-sst-2-english"
70
- industry: Optional[List[str]] = None
71
- aspects: bool = False
72
- product_category: Optional[List[str]] = None
73
- device: Optional[List[str]] = None
74
- follow_up: Optional[List[Union[str, List[str]]]] = None
75
- intelligence: Optional[bool] = False
76
-
77
- class FollowUpRequest(BaseModel):
78
- text: str
79
- question: str
80
- verbosity: Optional[str] = "brief"
81
-
82
- # ==== HELPERS ====
83
-
84
- def auto_fill(value: Optional[str], fallback: str) -> str:
85
- if not value or value.lower() == "auto-detect":
86
- return fallback
87
- return value
88
-
89
- # ==== ENDPOINTS ====
90
-
91
- @app.post("/analyze/")
92
- async def analyze(data: ReviewInput, x_api_key: str = Header(None)):
93
- if x_api_key and x_api_key != VALID_API_KEY:
94
- raise HTTPException(status_code=401, detail="❌ Invalid API key")
95
-
96
- if len(data.text.split()) < 20:
97
- raise HTTPException(status_code=400, detail="⚠️ Review too short for analysis (min. 20 words).")
98
-
99
- try:
100
- response = {}
101
-
102
- if not data.follow_up:
103
- summary = (
104
- summarize_review(data.text, max_len=40, min_len=8)
105
- if data.verbosity.lower() == "brief"
106
- else smart_summarize(data.text, n_clusters=2 if data.intelligence else 1)
107
- )
108
-
109
- sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
110
- sentiment = sentiment_pipeline(data.text)[0]
111
- emotion = detect_emotion(data.text)
112
-
113
- industry = detect_industry(data.text) if not data.industry or "auto" in data.industry.lower() else data.industry
114
- product_category = detect_product_category(data.text) if not data.product_category or "auto" in data.product_category.lower() else data.product_category
115
-
116
- response = {
117
- "summary": summary,
118
- "sentiment": sentiment,
119
- "emotion": emotion,
120
- "product_category": product_category,
121
- "device": "Web",
122
- "industry": industry
123
- }
124
-
125
- if data.follow_up:
126
- response["follow_up"] = answer_followup(data.text, data.follow_up, verbosity=data.verbosity)
127
-
128
- return response
129
-
130
- except Exception as e:
131
- logging.error(f"🔥 Unexpected analysis failure: {traceback.format_exc()}")
132
- raise HTTPException(status_code=500, detail="Internal Server Error during analysis. Please contact support.")
133
-
134
- @app.post("/followup/")
135
- async def followup(request: FollowUpRequest, x_api_key: str = Header(None)):
136
- if x_api_key and x_api_key != VALID_API_KEY:
137
- raise HTTPException(status_code=401, detail="Invalid API key")
138
-
139
- if not request.question or len(request.text.split()) < 10:
140
- raise HTTPException(status_code=400, detail="Question or text is too short.")
141
-
142
- try:
143
- answer = answer_only(request.text, request.question)
144
- return {"answer": answer}
145
- except Exception as e:
146
- logging.error(f"❌ Follow-up failed: {traceback.format_exc()}")
147
- raise HTTPException(status_code=500, detail="Internal Server Error during follow-up.")
148
-
149
- @app.post("/bulk/")
150
- async def bulk_analyze(data: BulkReviewInput, token: str = Query(None)):
151
- if token != VALID_API_KEY:
152
- raise HTTPException(status_code=401, detail="❌ Unauthorized: Invalid API token")
153
-
154
- try:
155
- results = []
156
- sentiment_pipeline = pipeline("sentiment-analysis", model=data.model)
157
-
158
- for i, review_text in enumerate(data.reviews):
159
- if len(review_text.split()) < 20:
160
- results.append({
161
- "review": review_text,
162
- "error": "Too short to analyze"
163
- })
164
- continue
165
-
166
- summary = smart_summarize(review_text, n_clusters=2 if data.intelligence else 1)
167
- sentiment = sentiment_pipeline(review_text)[0]
168
- emotion = detect_emotion(review_text)
169
-
170
- ind = auto_fill(data.industry[i] if data.industry else None, detect_industry(review_text))
171
- prod = auto_fill(data.product_category[i] if data.product_category else None, detect_product_category(review_text))
172
- dev = auto_fill(data.device[i] if data.device else None, "Web")
173
-
174
- result = {
175
- "review": review_text,
176
- "summary": summary,
177
- "sentiment": sentiment["label"],
178
- "score": sentiment["score"],
179
- "emotion": emotion,
180
- "industry": ind,
181
- "product_category": prod,
182
- "device": dev
183
- }
184
-
185
- if data.follow_up and i < len(data.follow_up):
186
- follow_q = data.follow_up[i]
187
- result["follow_up"] = answer_followup(review_text, follow_q)
188
-
189
- results.append(result)
190
-
191
- return {"results": results}
192
-
193
- except Exception as e:
194
- logging.error(f"🔥 Bulk processing failed: {traceback.format_exc()}")
195
- raise HTTPException(status_code=500, detail="Failed to analyze bulk reviews")