Hasitha16 commited on
Commit
1899061
·
verified ·
1 Parent(s): 388be05

Delete model.py

Browse files
Files changed (1) hide show
  1. model.py +0 -143
model.py DELETED
@@ -1,143 +0,0 @@
1
- import os
2
- os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
3
- os.environ["HF_HOME"] = "/tmp/hf-home"
4
-
5
- import nltk
6
- nltk.download("punkt", download_dir="/tmp/nltk_data")
7
-
8
- from sklearn.feature_extraction.text import TfidfVectorizer
9
- from sklearn.cluster import KMeans
10
- from sklearn.metrics.pairwise import cosine_similarity
11
- from nltk.tokenize import sent_tokenize
12
- from transformers import pipeline
13
- import numpy as np
14
- import logging
15
-
16
- # === Pipelines ===
17
- summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
18
- qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
19
- emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1)
20
-
21
- # === Brief Summarization ===
22
- def summarize_review(text, max_len=80, min_len=20):
23
- try:
24
- return summarizer(text, max_length=max_len, min_length=min_len, do_sample=False)[0]["summary_text"]
25
- except Exception as e:
26
- logging.warning(f"Summarization fallback used: {e}")
27
- return text
28
-
29
- # === Smart Summarization with Clustering ===
30
- def smart_summarize(text, n_clusters=1):
31
- try:
32
- sentences = sent_tokenize(text)
33
- if len(sentences) <= 1:
34
- return text
35
- tfidf = TfidfVectorizer(stop_words="english")
36
- tfidf_matrix = tfidf.fit_transform(sentences)
37
- if len(sentences) <= n_clusters:
38
- return " ".join(sentences)
39
- kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(tfidf_matrix)
40
- summary_sentences = []
41
- for i in range(n_clusters):
42
- idx = np.where(kmeans.labels_ == i)[0]
43
- if not len(idx):
44
- continue
45
- avg_vector = np.asarray(tfidf_matrix[idx].mean(axis=0))
46
- sim = cosine_similarity(avg_vector, tfidf_matrix[idx].toarray())
47
- most_representative = sentences[idx[np.argmax(sim)]]
48
- summary_sentences.append(most_representative)
49
- return " ".join(sorted(summary_sentences, key=sentences.index))
50
- except Exception as e:
51
- logging.error(f"Smart summarize error: {e}")
52
- return text
53
-
54
- # === Emotion Detection ===
55
- def detect_emotion(text):
56
- try:
57
- result = emotion_pipeline(text)[0]
58
- return result["label"]
59
- except Exception as e:
60
- logging.warning(f"Emotion detection failed: {e}")
61
- return "neutral"
62
-
63
- # === Follow-up Q&A (Flexible for list or str) ===
64
- def answer_followup(text, question, verbosity="brief"):
65
- try:
66
- if isinstance(question, list):
67
- answers = []
68
- for q in question:
69
- response = qa_pipeline({"question": q, "context": text})
70
- ans = response.get("answer", "")
71
- if verbosity.lower() == "detailed":
72
- answers.append(f"**{q}** → {ans}")
73
- else:
74
- answers.append(ans)
75
- return answers
76
- else:
77
- response = qa_pipeline({"question": question, "context": text})
78
- ans = response.get("answer", "")
79
- return f"**{question}** → {ans}" if verbosity.lower() == "detailed" else ans
80
- except Exception as e:
81
- logging.warning(f"Follow-up error: {e}")
82
- return "Sorry, I couldn't generate a follow-up answer."
83
-
84
- # === Fast follow-up (used for direct /followup route) ===
85
- def answer_only(text, question):
86
- try:
87
- if not question:
88
- return "No question provided."
89
- return qa_pipeline({"question": question, "context": text}).get("answer", "No answer found.")
90
- except Exception as e:
91
- logging.warning(f"Answer-only failed: {e}")
92
- return "Q&A failed."
93
-
94
- # === Optional Explanation Generator ===
95
- def generate_explanation(text):
96
- try:
97
- explanation = summarizer(text, max_length=60, min_length=20, do_sample=False)[0]["summary_text"]
98
- return f"🧠 This review can be explained as: {explanation}"
99
- except Exception as e:
100
- logging.warning(f"Explanation failed: {e}")
101
- return "⚠️ Explanation could not be generated."
102
-
103
- # === Industry Detector ===
104
- def detect_industry(text):
105
- text = text.lower()
106
- if any(k in text for k in ["doctor", "hospital", "health", "pill", "med"]):
107
- return "Healthcare"
108
- if any(k in text for k in ["flight", "hotel", "trip", "booking"]):
109
- return "Travel"
110
- if any(k in text for k in ["bank", "loan", "credit", "payment"]):
111
- return "Banking"
112
- if any(k in text for k in ["gym", "trainer", "fitness", "workout"]):
113
- return "Fitness"
114
- if any(k in text for k in ["movie", "series", "stream", "video"]):
115
- return "Entertainment"
116
- if any(k in text for k in ["game", "gaming", "console"]):
117
- return "Gaming"
118
- if any(k in text for k in ["food", "delivery", "restaurant", "order"]):
119
- return "Food Delivery"
120
- if any(k in text for k in ["school", "university", "teacher", "course"]):
121
- return "Education"
122
- if any(k in text for k in ["insurance", "policy", "claim"]):
123
- return "Insurance"
124
- if any(k in text for k in ["property", "rent", "apartment", "house"]):
125
- return "Real Estate"
126
- if any(k in text for k in ["shop", "buy", "product", "phone", "amazon", "flipkart"]):
127
- return "E-commerce"
128
- return "Generic"
129
-
130
- # === Product Category Detector ===
131
- def detect_product_category(text):
132
- text = text.lower()
133
- if any(k in text for k in ["mobile", "smartphone", "iphone", "samsung", "phone"]):
134
- return "Mobile Devices"
135
- if any(k in text for k in ["laptop", "macbook", "notebook", "chromebook"]):
136
- return "Laptops"
137
- if any(k in text for k in ["tv", "refrigerator", "microwave", "washer"]):
138
- return "Home Appliances"
139
- if any(k in text for k in ["watch", "band", "fitbit", "wearable"]):
140
- return "Wearables"
141
- if any(k in text for k in ["app", "portal", "site", "website"]):
142
- return "Web App"
143
- return "General"