Spaces:
Running
Running
Delete model.py
Browse files
model.py
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
|
3 |
-
os.environ["HF_HOME"] = "/tmp/hf-home"
|
4 |
-
|
5 |
-
import nltk
|
6 |
-
nltk.download("punkt", download_dir="/tmp/nltk_data")
|
7 |
-
|
8 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
9 |
-
from sklearn.cluster import KMeans
|
10 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
11 |
-
from nltk.tokenize import sent_tokenize
|
12 |
-
from transformers import pipeline
|
13 |
-
import numpy as np
|
14 |
-
import logging
|
15 |
-
|
16 |
-
# === Pipelines ===
|
17 |
-
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
|
18 |
-
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
19 |
-
emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1)
|
20 |
-
|
21 |
-
# === Brief Summarization ===
|
22 |
-
def summarize_review(text, max_len=80, min_len=20):
|
23 |
-
try:
|
24 |
-
return summarizer(text, max_length=max_len, min_length=min_len, do_sample=False)[0]["summary_text"]
|
25 |
-
except Exception as e:
|
26 |
-
logging.warning(f"Summarization fallback used: {e}")
|
27 |
-
return text
|
28 |
-
|
29 |
-
# === Smart Summarization with Clustering ===
|
30 |
-
def smart_summarize(text, n_clusters=1):
|
31 |
-
try:
|
32 |
-
sentences = sent_tokenize(text)
|
33 |
-
if len(sentences) <= 1:
|
34 |
-
return text
|
35 |
-
tfidf = TfidfVectorizer(stop_words="english")
|
36 |
-
tfidf_matrix = tfidf.fit_transform(sentences)
|
37 |
-
if len(sentences) <= n_clusters:
|
38 |
-
return " ".join(sentences)
|
39 |
-
kmeans = KMeans(n_clusters=n_clusters, random_state=42).fit(tfidf_matrix)
|
40 |
-
summary_sentences = []
|
41 |
-
for i in range(n_clusters):
|
42 |
-
idx = np.where(kmeans.labels_ == i)[0]
|
43 |
-
if not len(idx):
|
44 |
-
continue
|
45 |
-
avg_vector = np.asarray(tfidf_matrix[idx].mean(axis=0))
|
46 |
-
sim = cosine_similarity(avg_vector, tfidf_matrix[idx].toarray())
|
47 |
-
most_representative = sentences[idx[np.argmax(sim)]]
|
48 |
-
summary_sentences.append(most_representative)
|
49 |
-
return " ".join(sorted(summary_sentences, key=sentences.index))
|
50 |
-
except Exception as e:
|
51 |
-
logging.error(f"Smart summarize error: {e}")
|
52 |
-
return text
|
53 |
-
|
54 |
-
# === Emotion Detection ===
|
55 |
-
def detect_emotion(text):
|
56 |
-
try:
|
57 |
-
result = emotion_pipeline(text)[0]
|
58 |
-
return result["label"]
|
59 |
-
except Exception as e:
|
60 |
-
logging.warning(f"Emotion detection failed: {e}")
|
61 |
-
return "neutral"
|
62 |
-
|
63 |
-
# === Follow-up Q&A (Flexible for list or str) ===
|
64 |
-
def answer_followup(text, question, verbosity="brief"):
|
65 |
-
try:
|
66 |
-
if isinstance(question, list):
|
67 |
-
answers = []
|
68 |
-
for q in question:
|
69 |
-
response = qa_pipeline({"question": q, "context": text})
|
70 |
-
ans = response.get("answer", "")
|
71 |
-
if verbosity.lower() == "detailed":
|
72 |
-
answers.append(f"**{q}** → {ans}")
|
73 |
-
else:
|
74 |
-
answers.append(ans)
|
75 |
-
return answers
|
76 |
-
else:
|
77 |
-
response = qa_pipeline({"question": question, "context": text})
|
78 |
-
ans = response.get("answer", "")
|
79 |
-
return f"**{question}** → {ans}" if verbosity.lower() == "detailed" else ans
|
80 |
-
except Exception as e:
|
81 |
-
logging.warning(f"Follow-up error: {e}")
|
82 |
-
return "Sorry, I couldn't generate a follow-up answer."
|
83 |
-
|
84 |
-
# === Fast follow-up (used for direct /followup route) ===
|
85 |
-
def answer_only(text, question):
|
86 |
-
try:
|
87 |
-
if not question:
|
88 |
-
return "No question provided."
|
89 |
-
return qa_pipeline({"question": question, "context": text}).get("answer", "No answer found.")
|
90 |
-
except Exception as e:
|
91 |
-
logging.warning(f"Answer-only failed: {e}")
|
92 |
-
return "Q&A failed."
|
93 |
-
|
94 |
-
# === Optional Explanation Generator ===
|
95 |
-
def generate_explanation(text):
|
96 |
-
try:
|
97 |
-
explanation = summarizer(text, max_length=60, min_length=20, do_sample=False)[0]["summary_text"]
|
98 |
-
return f"🧠 This review can be explained as: {explanation}"
|
99 |
-
except Exception as e:
|
100 |
-
logging.warning(f"Explanation failed: {e}")
|
101 |
-
return "⚠️ Explanation could not be generated."
|
102 |
-
|
103 |
-
# === Industry Detector ===
|
104 |
-
def detect_industry(text):
|
105 |
-
text = text.lower()
|
106 |
-
if any(k in text for k in ["doctor", "hospital", "health", "pill", "med"]):
|
107 |
-
return "Healthcare"
|
108 |
-
if any(k in text for k in ["flight", "hotel", "trip", "booking"]):
|
109 |
-
return "Travel"
|
110 |
-
if any(k in text for k in ["bank", "loan", "credit", "payment"]):
|
111 |
-
return "Banking"
|
112 |
-
if any(k in text for k in ["gym", "trainer", "fitness", "workout"]):
|
113 |
-
return "Fitness"
|
114 |
-
if any(k in text for k in ["movie", "series", "stream", "video"]):
|
115 |
-
return "Entertainment"
|
116 |
-
if any(k in text for k in ["game", "gaming", "console"]):
|
117 |
-
return "Gaming"
|
118 |
-
if any(k in text for k in ["food", "delivery", "restaurant", "order"]):
|
119 |
-
return "Food Delivery"
|
120 |
-
if any(k in text for k in ["school", "university", "teacher", "course"]):
|
121 |
-
return "Education"
|
122 |
-
if any(k in text for k in ["insurance", "policy", "claim"]):
|
123 |
-
return "Insurance"
|
124 |
-
if any(k in text for k in ["property", "rent", "apartment", "house"]):
|
125 |
-
return "Real Estate"
|
126 |
-
if any(k in text for k in ["shop", "buy", "product", "phone", "amazon", "flipkart"]):
|
127 |
-
return "E-commerce"
|
128 |
-
return "Generic"
|
129 |
-
|
130 |
-
# === Product Category Detector ===
|
131 |
-
def detect_product_category(text):
|
132 |
-
text = text.lower()
|
133 |
-
if any(k in text for k in ["mobile", "smartphone", "iphone", "samsung", "phone"]):
|
134 |
-
return "Mobile Devices"
|
135 |
-
if any(k in text for k in ["laptop", "macbook", "notebook", "chromebook"]):
|
136 |
-
return "Laptops"
|
137 |
-
if any(k in text for k in ["tv", "refrigerator", "microwave", "washer"]):
|
138 |
-
return "Home Appliances"
|
139 |
-
if any(k in text for k in ["watch", "band", "fitbit", "wearable"]):
|
140 |
-
return "Wearables"
|
141 |
-
if any(k in text for k in ["app", "portal", "site", "website"]):
|
142 |
-
return "Web App"
|
143 |
-
return "General"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|