Spaces:
Running
Running
Update frontend.py
Browse files- frontend.py +16 -65
frontend.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
-
import azure.cognitiveservices.speech as speechsdk
|
5 |
import tempfile
|
6 |
import os
|
7 |
import plotly.express as px
|
@@ -57,48 +56,6 @@ with st.sidebar:
|
|
57 |
use_aspects = st.checkbox("π Detect Pain Points")
|
58 |
use_explain_bulk = st.checkbox("π§ Generate PM Insight (Bulk)")
|
59 |
verbosity = st.radio("π£οΈ Response Style", ["Brief", "Detailed"])
|
60 |
-
voice_lang = st.selectbox("π Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
|
61 |
-
|
62 |
-
# Text-to-Speech
|
63 |
-
# Setup usage tracking
|
64 |
-
if "tts_usage_count" not in st.session_state:
|
65 |
-
st.session_state.tts_usage_count = 0
|
66 |
-
if "enable_audio" not in st.session_state:
|
67 |
-
st.session_state.enable_audio = False
|
68 |
-
|
69 |
-
# Azure TTS function
|
70 |
-
def azure_speak(text, lang='en-US'):
|
71 |
-
import os
|
72 |
-
if "HF_SPACE_ID" in os.environ:
|
73 |
-
st.warning("Azure TTS is not supported on Hugging Face Spaces. Using fallback TTS.")
|
74 |
-
return None
|
75 |
-
|
76 |
-
if st.session_state.tts_usage_count > 20:
|
77 |
-
st.warning("π TTS usage limit reached.")
|
78 |
-
return None
|
79 |
-
|
80 |
-
try:
|
81 |
-
import azure.cognitiveservices.speech as speechsdk
|
82 |
-
speech_config = speechsdk.SpeechConfig(
|
83 |
-
subscription=st.secrets["AZURE_SPEECH_KEY"],
|
84 |
-
region=st.secrets["AZURE_REGION"]
|
85 |
-
)
|
86 |
-
speech_config.speech_synthesis_language = lang
|
87 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmpfile:
|
88 |
-
audio_config = speechsdk.audio.AudioOutputConfig(filename=tmpfile.name)
|
89 |
-
synthesizer = speechsdk.SpeechSynthesizer(speech_config, audio_config)
|
90 |
-
result = synthesizer.speak_text_async(text).get()
|
91 |
-
if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
|
92 |
-
st.session_state.tts_usage_count += 1
|
93 |
-
return tmpfile.name
|
94 |
-
else:
|
95 |
-
st.error("β Azure TTS failed.")
|
96 |
-
return None
|
97 |
-
except Exception as e:
|
98 |
-
st.error(f"Azure TTS error: {e}")
|
99 |
-
return None
|
100 |
-
|
101 |
-
|
102 |
|
103 |
tab1, tab2 = st.tabs(["π§ Analyze Review", "π Bulk Reviews"])
|
104 |
|
@@ -146,7 +103,11 @@ with tab1:
|
|
146 |
if res.ok:
|
147 |
st.session_state.last_response = res.json()
|
148 |
else:
|
149 |
-
|
|
|
|
|
|
|
|
|
150 |
except Exception as e:
|
151 |
st.error(f"π« Exception: {e}")
|
152 |
|
@@ -165,7 +126,6 @@ with tab1:
|
|
165 |
if data.get("pain_points"):
|
166 |
st.error("π Pain Points: " + ", ".join(data["pain_points"]))
|
167 |
|
168 |
-
# Add to churn log
|
169 |
try:
|
170 |
st.session_state.churn_log.append({
|
171 |
"timestamp": datetime.now(),
|
@@ -178,21 +138,6 @@ with tab1:
|
|
178 |
except Exception as e:
|
179 |
st.warning(f"π§ͺ Logging failed: {e}")
|
180 |
|
181 |
-
# Only show toggle and button for audio
|
182 |
-
st.subheader("π Audio Summary")
|
183 |
-
st.session_state.enable_audio = st.toggle("π§ Generate Audio Summary")
|
184 |
-
|
185 |
-
if st.session_state.enable_audio:
|
186 |
-
if st.session_state.tts_usage_count > 20:
|
187 |
-
st.warning("π Azure TTS usage limit reached for this session.")
|
188 |
-
else:
|
189 |
-
if st.button("βΆοΈ Generate & Play Audio"):
|
190 |
-
audio_path = azure_speak(data["summary"], lang=f"{voice_lang}-US")
|
191 |
-
if audio_path:
|
192 |
-
audio_bytes = open(audio_path, "rb").read()
|
193 |
-
st.audio(audio_bytes, format="audio/mp3")
|
194 |
-
st.download_button("β¬οΈ Download Audio", audio_bytes, "summary.mp3")
|
195 |
-
|
196 |
st.markdown("### π Ask a Follow-Up")
|
197 |
sentiment = data["sentiment"]["label"].lower()
|
198 |
churn = data.get("churn_risk", "")
|
@@ -215,12 +160,15 @@ with tab1:
|
|
215 |
"verbosity": verbosity
|
216 |
}
|
217 |
headers = {"x-api-key": api_token}
|
218 |
-
|
219 |
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
|
220 |
if res.ok:
|
221 |
st.success(res.json().get("answer"))
|
222 |
else:
|
223 |
-
|
|
|
|
|
|
|
|
|
224 |
except Exception as e:
|
225 |
st.error(f"β οΈ Follow-up error: {e}")
|
226 |
|
@@ -237,7 +185,6 @@ with tab1:
|
|
237 |
except Exception as e:
|
238 |
st.error(f"Trend error: {e}")
|
239 |
|
240 |
-
|
241 |
# === BULK REVIEW ANALYSIS ===
|
242 |
with tab2:
|
243 |
st.title("π Bulk Feedback Analysis")
|
@@ -261,6 +208,10 @@ with tab2:
|
|
261 |
st.dataframe(df)
|
262 |
st.download_button("β¬οΈ Export Results CSV", df.to_csv(index=False), "bulk_results.csv")
|
263 |
else:
|
264 |
-
|
|
|
|
|
|
|
|
|
265 |
except Exception as e:
|
266 |
-
st.error(f"Bulk analysis failed: {e}")
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
import pandas as pd
|
|
|
4 |
import tempfile
|
5 |
import os
|
6 |
import plotly.express as px
|
|
|
56 |
use_aspects = st.checkbox("π Detect Pain Points")
|
57 |
use_explain_bulk = st.checkbox("π§ Generate PM Insight (Bulk)")
|
58 |
verbosity = st.radio("π£οΈ Response Style", ["Brief", "Detailed"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
tab1, tab2 = st.tabs(["π§ Analyze Review", "π Bulk Reviews"])
|
61 |
|
|
|
103 |
if res.ok:
|
104 |
st.session_state.last_response = res.json()
|
105 |
else:
|
106 |
+
try:
|
107 |
+
err_detail = res.json().get("detail", "No detail provided.")
|
108 |
+
except Exception:
|
109 |
+
err_detail = res.text
|
110 |
+
st.error(f"β Backend Error ({res.status_code}): {err_detail}")
|
111 |
except Exception as e:
|
112 |
st.error(f"π« Exception: {e}")
|
113 |
|
|
|
126 |
if data.get("pain_points"):
|
127 |
st.error("π Pain Points: " + ", ".join(data["pain_points"]))
|
128 |
|
|
|
129 |
try:
|
130 |
st.session_state.churn_log.append({
|
131 |
"timestamp": datetime.now(),
|
|
|
138 |
except Exception as e:
|
139 |
st.warning(f"π§ͺ Logging failed: {e}")
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
st.markdown("### π Ask a Follow-Up")
|
142 |
sentiment = data["sentiment"]["label"].lower()
|
143 |
churn = data.get("churn_risk", "")
|
|
|
160 |
"verbosity": verbosity
|
161 |
}
|
162 |
headers = {"x-api-key": api_token}
|
|
|
163 |
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
|
164 |
if res.ok:
|
165 |
st.success(res.json().get("answer"))
|
166 |
else:
|
167 |
+
try:
|
168 |
+
err_detail = res.json().get("detail", "No detail provided.")
|
169 |
+
except Exception:
|
170 |
+
err_detail = res.text
|
171 |
+
st.error(f"β Follow-up API Error ({res.status_code}): {err_detail}")
|
172 |
except Exception as e:
|
173 |
st.error(f"β οΈ Follow-up error: {e}")
|
174 |
|
|
|
185 |
except Exception as e:
|
186 |
st.error(f"Trend error: {e}")
|
187 |
|
|
|
188 |
# === BULK REVIEW ANALYSIS ===
|
189 |
with tab2:
|
190 |
st.title("π Bulk Feedback Analysis")
|
|
|
208 |
st.dataframe(df)
|
209 |
st.download_button("β¬οΈ Export Results CSV", df.to_csv(index=False), "bulk_results.csv")
|
210 |
else:
|
211 |
+
try:
|
212 |
+
err_detail = res.json().get("detail", "No detail provided.")
|
213 |
+
except Exception:
|
214 |
+
err_detail = res.text
|
215 |
+
st.error(f"β Bulk API Error ({res.status_code}): {err_detail}")
|
216 |
except Exception as e:
|
217 |
+
st.error(f"Bulk analysis failed: {e}")
|